
USENIX Association 11th USENIX Conference on File and Storage Technologies (FAST ’13) 299

Screaming Fast Galois Field Arithmetic Using Intel SIMD Instructions

James S. Plank
EECS Department

University of Tennessee

Kevin M. Greenan
EMC Backup Recovery

Systems Division

Ethan L. Miller
Computer Science Department

UC Santa Cruz

Abstract
Galois Field arithmetic forms the basis of Reed-Solomon
and other erasure coding techniques to protect storage
systems from failures. Most implementations of Galois
Field arithmetic rely on multiplication tables or discrete
logarithms to perform this operation. However, the ad-
vent of 128-bit instructions, such as Intel’s Streaming
SIMD Extensions, allows us to perform Galois Field
arithmetic much faster. This short paper details how to
leverage these instructions for various field sizes, and
demonstrates the significant performance improvements
on commodity microprocessors. The techniques that we
describe are available as open source software.

1 Introduction

Storage systems rely on erasure codes to protect them-
selves from data loss. Erasure codes provide the basic
underlying technology for RAID-6 systems that can tol-
erate the failures of any two disks [1, 7], cloud systems
that tolerate larger numbers of failures [6, 12, 19, 21],
and archival systems that tolerate catastrophic situa-
tions [18, 29, 31, 32]. The canonical erasure code is
the Reed-Solomon code [27], which organizes a stor-
age system as a set of linear equations. The arith-
metic of these linear equations is Galois Field arithmetic,
termed GF (2w), defined as arithmetic over w-bit words.
When applied to a storage system, encoding and decod-
ing compute these linear equations by multiplying large
regions of bytes by various w-bit contants in GF (2w)
and then combining the products using bitwise exclusive-
or (XOR). Thus, the two fundamental operations are per-
forming multiplication of a region of bytes by a constant,
and performing the XOR of two regions of bytes.

Historically, implementations of Galois Field arith-
metic use multiplication tables for small values of w, log-
arithm tables for larger values, and incremental shifters
for even larger values [9, 21, 22]. In practice, the perfor-

mance of multiplication is at least four times slower than
XOR [26].

In recent years, processors that implement Intel’s
Streaming SIMD Extensions instruction set have become
ubiquitous. The SIMD instructions allow 128-bit num-
bers to be manipulated in the CPU, and their ramifica-
tions for multiplying regions of numbers by constants in
GF (2w) are significant. Anecdotes of performing Ga-
lois Field arithmetic “at cache line speeds” have become
commonplace at meetings such as Usenix FAST. How-
ever, as these anecdotes have typically come from those
working at storage companies, the exact mechanics of
using the SIMD instructions have been guarded.

This short paper details the SIMD instructions to mul-
tiply regions of bytes by constants in GF (2w) for w ∈
{4, 8, 16, 32}. These are the most common values of w
in storage installations (please see Section 2 for a dis-
cussion of why w matters in a storage system). Each
value of w requires different implementation techniques,
some of which are subtle. We present each technique in
enough detail for a reader to implement it in his or her
own storage system, and we detail an open source imple-
mentation. The performance of these implementations
is 2.7 to 12 times faster than other implementations of
Galois Field arithmetic.

2 Erasure Codes and Galois Fields

Erasure codes that are based on Galois Field arithmetic
are defined by a set of linear equations. A storage sys-
tem composed of n disks is partitioned into k that hold
data and m that hold coding information that is calcu-
lated from the data. For the purposes of the code, each
disk logically stores one w-bit word. Suppose the words
on the data disks are labeled d0, . . . , dk−1 and the words
on the coding disks are labeled c0, . . . , cm−1. Then cre-
ating the coding words from the data words may be ex-

300 11th USENIX Conference on File and Storage Technologies (FAST ’13) USENIX Association

pressed by m equations (where arithmetic is in GF (2w):

For 0 ≤ i < m : ci =

k−1∑
j=0

ai,jdj . (1)

For example, the RAID-6 installation in the Linux kernel
has two coding disks, c0 and c1, which are created by two
equations [1]:

c0 = d0 + d1 + d2 + . . .+ dk−1

c1 = d0 + 2d1 + 4d2 . . .+ 2k−1dk−1

When up to m disks fail, we are left with m equations
with up to m unknown variables. We decode by solv-
ing those equations with Gaussian elimination or matrix
inversion.

There are a variety of erasure codes that are organized
in this fashion. The most prevalent one is the Reed-
Solomon code [27], which employs a generator matrix
to define the above equations for any value of k and m,
so long as k +m ≤ 2w. Reed-Solomon codes are Maxi-
mum Distance Separable (MDS), which means that they
tolerate the loss of any m disks. There is a detailed tu-
torial by Plank that spells out exactly how to implement
Reed-Solomon codes in storage systems [22, 24].

More recently, other erasure codes have been devel-
oped that are based on the above methodology. Pyramid
codes [11], LRC codes [12] and F-MSR codes [10] are
all based on Galois Field arithmetic to achieve improved
encoding performance, tolerance to sector failures, and
improved decoding performance. LRC codes are the era-
sure code currently employed by the Microsoft Azure
cloud storage system [12].

When implementing an erasure code, a value of w
must be selected. This has three main impacts. First,
it impacts the size of the storage system. For example,
when using Reed-Solomon codes, a value of w = 4 can
be used on systems up to 16 disks in size. A value of w =
8 expands that to 256 disks, and a value of w = 16 ex-
pands that to 65,536 disks. Second, it impacts layout.
Implementors typically choose values of w that are fac-
tors of two so that w-bit words in the coding system fit
precisely into machine words. Finally, it impacts per-
formance. We will explore performance below, but the
rule of thumb is that larger values of w perform more
slowly than smaller values. For that reason, one typically
chooses the smallest value of w such that w is a power
of two and has the properties needed for the size of one’s
storage system. For example, Azure uses w = 4 [12],
while Cleversafe uses w = 8 [28]. There are benefits to
larger w that justify the extra complexity of implemen-
tation. For example, HAIL blends security and erasure
coding, using large values of w such as 32 and 64 [21].

3 XOR’s and Region Multiplication

Although coding equations such as (1) work on single
words, in reality, the data and coding words are larger
regions of bytes, such as disk sectors in RAID systems,
or very large blocks of sectors in cloud systems [12, 17].
The reason is that when one partitions a region of bytes
into multiple words, one can perform operations on them
in parallel.

Figure 1: Two 8-byte regions of memory A and B are
partitioned into four 16-bit words. The last two lines
show how addition and multiplication are mapped to the
individual words of the regions.

We depict an example in Figure 1. Here we have two
8-byte regions of memory, A and B, each of which is par-
titioned into four 16-bit words, a0, . . . , a3 and b0, . . . , b3.
With Galois Field arithmetic, addition is equivalent to
XOR; thus adding the region A and B is equivalent to
adding each ai with each bi, and it may be implemented
with a single 64-bit XOR operation. One may view mul-
tiplication of A by a constant y as multiplying each ai
by y. Performing this operation fast is the subject of this
paper.

4 Streaming SIMD Instructions

Intel’s Streaming SIMD Instructions [15] have has be-
come ubiquitous in today’s commodity microproces-
sors. They are supported in CPUs sold by Intel, AMD,
Transmeta and VIA. Compiler support for these instruc-
tions have been developed as well; however, leveraging
these instructions for Galois Field arithmetic requires too
much application-specific knowledge for the compilers.

The basic data type of the SIMD instructions is a 128-
bit word, and we leverage the following instructions in
our implementations:

• mm set1 epi8(b) creates a 128-bit variable by repli-
cating the byte b sixteen times. mm set1 epi16(b),
mm set1 epi32(b) and mm set1 epi64(b) set the
variable by replicating 2-byte, 4-byte and 8-byte
words respectively.

• mm and si128(a, b) and mm xor si128(a, b) per-
form bitwise AND and bitwise XOR on 128-bit
words a and b respectively.

2

USENIX Association 11th USENIX Conference on File and Storage Technologies (FAST ’13) 301

Figure 2: Multiplying a 128-bit region A by y = 7 in GF (24). The first few instructions show variables that are set
up before performing the multiplication. The last six perform the 32 multiplications using two table lookups.

• mm srli epi64(a, b) treats a as two 64-bit words,
and right shifts each by b bits. mm slli epi64(a, b)
performs left shifts instead.

• mm shuffle epi8(a, b) is the real enabling SIMD
instruction for Galois Fields. Both a and b are
128-bit variables partitioned into sixteen individual
bytes. The operation treats a as a 16-element table
of bytes, and b as 16 indices, and it returns a 128-bit
vector composed of 16 simultaneous table lookups,
one for each index in b.

5 Calculating yA in GF (24)

When w = 4, there are only 16 values that a word may
have. Thus, employing a 16 × 16 multiplication table
requires very little memory, and such a table may be pre-
computed very quickly. While that suffices to perform
multiplication of single values, it is less efficient when
performing yA where y is a 4-bit word and A is a region
of bytes, because a separate table lookup is required for
every four bits in A.

The mm shuffle epi8(a, b) instruction may be lever-
aged so that yA may be performed 128-bits at a time with
just two table lookup operations. We give a detailed ex-
ample in Figure 2. In this example, we are multiplying a
16-byte region, A, by y = 7 in GF (24). In the figure, we
show 128-bit variables on the right and the instructions
that create them on the left. The variables are presented
as 16 two-digit numbers in hexadecimal. The figure is
broken into three parts. The first part displays two mul-
tiplication tables that are created from y, and two masks.
The second part shows the 16 bytes of A. The third part
shows how to implement the multiplication. The low-
order four bit words of each byte of A are isolated using

the first mask, and they are used to perform 16 simulta-
neous table lookups that multiply those words by 7. The
result is put into l. The high-order four bit words of each
byte of A are then isolated using the second mask, right
shifted by four bits and then used to perform table lookup
in the second table. The result is put into h, which is
combined with l to create the product. Thus, six instruc-
tions suffice for the 32 multiplications.

6 Calculating yA in GF (28)

As with GF (24), one can implement multiplication
in GF (28) with table lookup. For a given value of y,
one needs a 256-element table of bytes to look up each
potential value of yai. However, mm shuffle epi8() only
works on 16-element tables. To keep the prose clean,
let us first drop the “i” subscript of ai. To leverage
mm shuffle epi8(), we observe that we can split a into
two four-bit words, al and ar, and then perform the mul-
tiplication with two table lookups. This is called a “left-
right table” by Greenan et al [9].

To be precise, let a be an 8-bit word and let al and ar
be four-bit words so that:

a = (al � 4)⊕ ar.

Then:
ya = y(al � 4)⊕ yar.

Thus, to implement multiplication, we create table1 and
table2 as in Section 5. Table1 contains the product of y
with all four-bit words, ar, and table2 contains the prod-
uct of y with all eight-bit words whose last four bits are
zeros, (al � 4), indexed by al. We give an example of
these tables when y = 7 in Figure 3. Unlike Figure 2,

3

302 11th USENIX Conference on File and Storage Technologies (FAST ’13) USENIX Association

these tables are not four-bit shifts of each other. Instead,
each table contains the eight bit product of 7 with another
element of GF (28) whose first or last four bits happen to
equal zero. For example, in GF (28), the product of 7 and
0xa is 0x36, and the product of 7 and 0xa0 is 0x47.

Figure 3: The two tables for multiplying 128-bit regions
by y = 7 in GF (28).

After the two tables are constructed, the product yA
is calculated with the exact same six instructions as in
Figure 2. Since the tables are small, and there are only
256 potential values of y, they may be precomputed.

It should be noted that this implementation technique
was documented in assembly code by Anvin in his ex-
planation of RAID 6 decoding in the Linux kernel [1].

7 Calculating yA in GF (216)

A similar technique may be employed for GF (216);
however, there are quite a few subtleties. As above, so
that we can use mm shuffle epi8(), we split each a into
subwords whose sizes are four bits. Let those words
be a0 through a3. Then we calculate the product with
the equation:

yai = y(a3 � 12) + y(a2 � 8) + y(a1 � 4) + ya0.

Unfortunately, we cannot map each subproduct to a sin-
gle mm shuffle epi8() instruction, because each subprod-
uct is a 16-bit word, and mm shuffle epi8() only performs
table lookup on bytes. Thus, we need to use two tables
per subproduct: one that holds the low-order bytes of
each product, and one that holds the high-order bytes.
This is a total of eight tables, which we label Tihigh, for
the tables that calculate the high product bytes using ai,
and Tilow, for the tables that calculate the low bytes us-
ing ai.

To fully utilize mm shuffle epi8()’s ability to perform
16 simultaneous table lookups, it is best not to map
words to contiguous memory locations as in Figure 1.
Instead, every set of 16 words is mapped to two 128-bit
variables, where the high byte (a3 and a2) of each word
is in the first variable, and the low byte (a1 and a0) is in
the second variable.

Because this can be quite confusing, we show a picture
in Figure 4, which shows the first six bytes of two 128-bit
variables, Ahigh and Alow. The variables together hold
sixteen 16-bit words, of which we show three, b, c and

Figure 4: Using eight lookup tables and an alternate map-
ping of words to memory, to multiply a region A of six-
teen 16-bit words in GF (216). Each rectangle is a byte,
and only three words, b, c and d are shown. Each word is
split into two bytes, one of which is stored in Ahigh and
one in Alow. Each product yAhigh and yAlow requires
four mm shuffle epi8() operations, plus some bit masks
and shifts.

d, in the picture. The high bytes of b, c and d are held
in Ahigh and the low bytes are held in Alow.

Calculating the products requires four
mm shuffle epi8() operations for each of yAhigh

and yAlow. For yAhigh, we use the tables Tihigh
and for yAlow, we use the tables Tilow. By splitting
each 16-bit word into two 128-bit variables, we can
fully utilize mm shuffle epi8()’s ability to perform 16
simultaneous table lookups.

We call this technique Altmap, because it maps words
to memory differently than the standard mapping of Fig-
ure 1. The down sides to Altmap are that memory regions
are constrained to be multiples of 32 bytes, and that it is
more confusing than the standard mapping. For the pur-
poses of erasure coding, however, memory regions are
only multiplied by constants and XOR’d together, so one
only needs to actually extract the 16-bit values from the
memory regions when debugging.

The eight tables consume a total of 128 bytes, and
there are 64K potential values of y, so it is conceivable
that the tables may be precomputed and stored. However,
computing them at the beginning of the multiplication
operation takes under 200 instructions, which means that
table creation may be amortized by multiplying larger re-
gions of memory by the same constant.

7.1 Using the Standard Mapping
If the standard mapping must be employed, for exam-
ple to be interoperable with other erasure coding im-
plementations that employ the standard mapping, then

4

USENIX Association 11th USENIX Conference on File and Storage Technologies (FAST ’13) 303

Figure 5: The SIMD instructions for converting two 128-
bit variables to the alternate mapping and back again.

one may convert the standard mapping to the alternate
mapping before multiplying each set of 16 words, and
then convert back. The conversions leverage the in-
structions mm packus epi16(), mm unpackhi epi8() and
mm unpacklo epi8(), which pack two 128-bit variables
into one, and unpack one 128-bit variable into two. We
demonstrate the operations in Figure 5, which pictures
the first four bytes of each 128-bit variable.

8 Calculating yA in GF (232)

The same technique for w = 16 generalizes to larger
values of w. For w = 32, we partition each word a
into eight four-bit words which are be used as indices
for mm shuffle epi8() calls. Since the products are 32-bit
words, there must be four tables for each four-bit word,
for a total of 32 different lookup tables. As with w = 16,
we employ the alternate mapping so that each set of six-
teen 32-bit words is held in four 128-bit vectors in such
a way that each vector holds one byte from each word.
We may convert the standard mapping to the alternate
mapping and back again using a similar technique as
with w = 16.

9 Performance

We have released an open source library in C called GF-
Complete [25]. The library implements all documented
techniques for performing Galois Field arithmetic, in-
cluding logarithm and multiplication tables from stan-
dard libraries like jerasure [26] and Rizzo’s FEC li-
brary [30], split multiplication tables [26, 9], compos-
ite fields [9, 21], bit-grouping tables [21] and Anvin’s
technique based on fast multiplication by two, which is

included in the Linux kernel and has received further at-
tention that leverages GPU co-processors [1, 16].

Our performance evalution briefly demonstrates the
dramatic speed improvements due to these techniques.
GF-Complete includes a performance testing module
which fills regions of bytes with random values, and then
multiplies those regions by contants in GF (2w). We
show results of the performance tester in Figure 6. The
testing machine is a 3.4 GHz Intel Core i7-3770 with
16 GB of DRAM, a 256 KB L2 cache and an 8 MB L3
cache. In the tests, we vary the region sizes from 1 KB
to 1 GB in multiples of four and encode a total of 5 GB.

On the rightmost graph, we include baseline perfor-
mance numbers for reference: the speed of memcpy(),
the speed of mm xor si128(), and the speed of multi-
plying regions by two using Anvin’s SIMD optimization
from the Linux kernel [1], which is independent of w.

For controls, we include historically “standard” tech-
niques as implemented by jerasure/Rizzo [26, 30]: Mul-
tiplication tables for w ∈ {4, 8}, logarithm tables
for w = 16 and seven “split” multiplication tables, each
of size 256x256 for w = 32. For w ∈ {4, 8, 16}, we
also include “16-bit tables.” These break up the regions
into 16-bit words and use them as indices into a table
that is created at the beginning of multiplication (except
for w = 4, where the tables are precomputed). This im-
proves upon the standard multiplication tables for w ∈
{4, 8} because 16 bits of table-lookup are performed at a
time, as opposed to four table lookups for w = 4 and two
for w = 8. We also include “By-two,” which structures
multiplication by selectively multiplying 128-bit regions
by two using Anvin’s optimization [1, 16].

The SIMD implementations and the baselines follow
similar trajectories which are cache dependent. As the
region sizes grow, performance improves as setup costs
are amortized. Performance reaches a peak as caches are
saturated: Memcpy() and XOR are limited by the L1
cache; while the SIMD techniques and Anvin’s optimiza-
tion are limited by the L2 cache. When the L2 cache is
saturated (at a region size of 256 KB), performance drops
slightly. When the L3 cache is saturated (at a region size
of 4 MB), the performance drops dramatically. In fact,
then the L3 cache is saturated, the SIMD performance,
even at w = 32, matches that of XOR.

Because they perform roughly the same opera-
tions, w = 4 and w = 8 perform identically. w = 16
performs slightly slower, and w = 32 slower still. With
respect to the controls, at their peak, the SIMD imple-
mentations perform 2.7 to to 12 times faster than the
other implementations. When w ∈ {16, 32}, the alter-
nate mappings perform 48 and 33 percent faster than the
standard mappings, which require conversion to the al-
ternate mapping and back again.

The base conclusion to draw from the tests in Figure 6

5

304 11th USENIX Conference on File and Storage Technologies (FAST ’13) USENIX Association

1 KB 1 MB 1 GB

Region Size

0.5

1

2

4

8

16

M
u

lt
ip

li
ca

ti
o
n

S
p

ee
d

 (
G

B
/s

)

w = 4

1 KB 1 MB 1 GB

Region Size

w = 8

1 KB 1 MB 1 GB

Region Size

w = 16

1 KB 1 MB 1 GB

Region Size

w = 32

1 KB 1 MB 1 GB

Region Size

1

2

4

8

16

32

64

Baselines

Memcpy

XOR

Anvin*2

Logarithm Tables

Multiplication Tables

16-Bit Tables

7 Split Tables

SIMD, Stdmap

SIMD, Altmap By-two

Figure 6: The performance of multiplying regions of bytes by constants in GF (2w).

is that with the SIMD instructions, the cache becomes
the limiting factor of multiplication, and I/O becomes the
dominant concern with erasure coding.

10 Related Work

There has been quite a lot of work on implementing Ga-
lois Field arithmetic in software. The various imple-
mentation techniques detailed in Section 9 are explained
in papers by Anvin [1], Greenan [9], Kalcher [16],
Lopez [20], Luo [21] and Plank [22]. The implica-
tions on erasure coding systems has been demonstrated
to varying degrees by Greenan [9], Hu [10], Huang [12],
Khan [17] and Luo [21]. The techniques in this pa-
per have been leveraged to sustain throughputs of over
4 GB/s in recent tests of Reed-Solomon coding [23].

Of particular interest is the judicious design of RAID
6 in the Linux kernel [1]. By employing the encoding
equations c0 and c1 from Section 2, one coding disk re-
quires only XOR calculations, and the second requires
XOR’s and multiplications by two using the baseline
implementation from Figure 6. General-purpose multi-
plication is only required upon decoding, and the ker-
nel employs a technique which is identical to our tech-
nique for GF (28), albeit implemented directly in assem-
bly code. As such, the CPU performance of encoding
and decoding is thoroughly optimized.

This paper focuses solely on multiplying regions of
bytes by constants. Its results do not apply to optimizing
single multiplication operations. For these, the standard
tables work the best for w ≤ 16, and the grouping tech-
niques of Luo perform the best for w = 32 [21].

While we only employ Intel’s SIMD instructions,
other instructions sets like Altivec and AVX2 feature
permutation instructions that may be leveraged simi-
larly. The Intel Performance Primitives library [14]
has deprecated (as of revision 7.1) Galois Field opera-
tions; however, these only support single multiplications

for GF (28) and cannot be leveraged in a SIMD fashion.

11 Conclusion

In this paper, we demonstrate how to leverage 128-bit
SIMD instructions to perform multiplication of a re-
gion of bytes by a constant in Galois Fields GF (2w),
where w ∈ {4, 8, 16, 32}. For w ∈ {16, 32}, an alternate
mapping of words to memory allows us to further opti-
mize performance. For a small penalty, one may convert
this mapping back to the standard mapping.

We have implemented these techniques in an open-
source library whose performance we have tested and
compared to other Galois Field implementations. The
improvement ranges from 2.7 to 12 times faster than the
traditional implementations, and helps to perpetuate a
trend of worrying more about I/O than CPU performance
in erasure coding settings.

The speed of multiplication using these techniques
is so much faster than previous implementations that
it has implications on the design of erasure codes. A
previous assumption in erasure code design has been
that erasure codes based on XOR operations are sig-
nificantly faster than those based on Galois Field arith-
metic. This assumption has led to the design of many
XOR-only erasure codes [2, 4, 5, 7, 13, 33]. When Ga-
lois Field multiplication is cache-limited, erasure codes
based on Galois Field arithmetic become viable alterna-
tives to XOR codes. Recent examples of codes based
on Galois Field arithmetic are LRC and Rotated Reed-
Solomon codes [12, 17] for improved recovery perfor-
mance in cloud storage systems, regenerating codes to
lower network bandwidth in decentralized storage set-
tings [8, 10], and PMDS/SD codes to improve storage ef-
ficiency in disk arrays [3, 23]. The applicability of these
codes is heightened by the techniques in this paper, and
we anticipate that future code design will rely more on
Galois Field arithmetic than on XOR’s.

6

USENIX Association 11th USENIX Conference on File and Storage Technologies (FAST ’13) 305

12 Acknowledgements

This material is based upon work supported by the Na-
tional Science Foundation under grants CNS-0917396,
IIP-0934401 and CSR-1016636. The authors would like
to thank shepherd Joseph Tucek and the FAST referees
for constructive comments on the paper.

References

[1] H. P. Anvin. The mathematics of RAID-
6. http://kernel.org/pub/linux/kernel/

people/hpa/raid6.pdf, 2011.

[2] M. Blaum, J. Brady, J. Bruck, and J. Menon.
EVENODD: An efficient scheme for tolerat-
ing double disk failures in RAID architectures.
IEEE Transactions on Computing, 44(2):192– 202,
February 1995.

[3] M. Blaum, J. L. Hafner, and S. Hetzler. Partail-
MDS codes and their application to RAID type
of architectures. IBM Research Report RJ10498
(ALM1202-001), February 2012.

[4] M. Blaum and R. M. Roth. On lowest density MDS
codes. IEEE Transactions on Information Theory,
45(1):46–59, January 1999.

[5] J. Blomer, M. Kalfane, M. Karpinski, R. Karp,
M. Luby, and D. Zuckerman. An XOR-based
erasure-resilient coding scheme. Technical Report
TR-95-048, International Computer Science Insti-
tute, August 1995.

[6] B. Calder, J. Wang, A. Ogus, N. Nilakantan,
A. Skjolsvold, S. McKelvie, Y. Xu, S. Srivastav,
J. Wu, H. Simitci, J. Haridas, C. Uddaraju, H. Kha-
tri, A. Edwards, V. Bedekar, S. Mainali, R. Abbasi,
A. Agarwal, M. Fahim ul Haq, M. Ikram ul Haq,
D. Bhardwaj, S. Dayanand, A. Adusumilli, M. Mc-
Nett, S. Sankaran, K. Manivannan, and L. Rigas.
Windows Azure Storage: A highly available cloud
storage service with strong consistency. In 23rd
ACM Symposium on Operating Systems Principles,
October 2011.

[7] P. Corbett, B. English, A. Goel, T. Grcanac,
S. Kleiman, J. Leong, and S. Sankar. Row diag-
onal parity for double disk failure correction. In
3rd Usenix Conference on File and Storage Tech-
nologies, San Francisco, CA, March 2004.

[8] A. G. Dimakis, K. Ramchandran, Y. Wu, and
C. Suh. A survey on network codes for distributed
storage. Proceedings of the IEEE, 99(3), March
2011.

[9] K. Greenan, E. Miller, and T. J. Schwartz. Opti-
mizing Galois Field arithmetic for diverse proces-
sor architectures and applications. In MASCOTS
2008: 16th IEEE Symposium on Modeling, Analy-
sis and Simulation of Computer and Telecommuni-
cation Systems, Baltimore, MD, September 2008.

[10] Y. Hu, H. C. H. Chen, P. P. C. Lee, and Y. Tang.
NCCloud: Applying network coding for the stor-
age repair in a cloud-of-clouds. In FAST-2012: 10th
Usenix Conference on File and Storage Technolo-
gies, San Jose, February 2012.

[11] C. Huang, M. Chen, and J. Li. Pyramid codes:
Flexible schemes to trade space for access effi-
cienty in reliable data storage systems. In NCA-
07: 6th IEEE International Symposium on Net-
work Computing Applications, Cambridge, MA,
July 2007.

[12] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder,
P. Gopalan, J. Li, and S. Yekhanin. Erasure cod-
ing in Windows Azure storage. In USENIX Annual
Technical Conference, Boston, June 2012.

[13] C. Huang and L. Xu. STAR: An efficient coding
scheme for correcting triple storage node failures.
IEEE Transactions on Computers, 57(7):889–901,
July 2008.

[14] Intel Corporation. Intel Integrated Performance
Primitives for Intel architecture, reference man-
ual IPP 7.1. http://software.intel.com,
2000-2012.

[15] Intel Corporation. Intel 64 and IA-32 architectures
software developers manual, combined volumes:
1, 2A, 2B, 2C, 3A, 3B and 3C. Order Number:
325462-044US, August 2012.

[16] S. Kalcher and V. Lindenstruth. Accelerating Ga-
lois Field arithmetic for Reed-Solomon erasure
codes in storage applications. In IEEE Interna-
tional Conference on Cluster Computing, 2011.

[17] O. Khan, R. Burns, J. S. Plank, W. Pierce, and
C. Huang. Rethinking erasure codes for cloud
file systems: Minimizing I/O for recovery and de-
graded reads. In FAST-2012: 10th Usenix Confer-
ence on File and Storage Technologies, San Jose,
February 2012.

[18] A. Leventhal. Triple-parity RAID and beyond.
Communications of the ACM, 53(1):58–63, January
2010.

7

306 11th USENIX Conference on File and Storage Technologies (FAST ’13) USENIX Association

[19] X. Li, A. Marchant, M. A. Shah, K. Smath-
ers, J. Tucek, M. Uysal, and J. J. Wylie. Effi-
cient eventual consistency in Pahoehoe, an erasure-
coded key-blob archive. In DSN-10: International
Conference on Dependable Systems and Networks,
Chicago, 2010. IEEE.

[20] J. Lopez and R. Dahab. High-speed software mul-
tiplication in f2m . In Annual International Confer-
ence on Cryptology in India, 2000.

[21] J. Luo, K. D. Bowers, A. Oprea, and L. Xu. Effi-
cient software implementations of large finite fields
GF (2n) for secure storage applications. ACM
Transactions on Storage, 8(2), February 2012.

[22] J. S. Plank. A tutorial on Reed-Solomon coding for
fault-tolerance in RAID-like systems. Software –
Practice & Experience, 27(9):995–1012, Septem-
ber 1997.

[23] J. S. Plank, M. Blaum, and J. L. Hafner. SD codes:
Erasure codes designed for how storage systems re-
ally fail. In FAST-2013: 11th Usenix Conference on
File and Storage Technologies, San Jose, February
2013.

[24] J. S. Plank and Y. Ding. Note: Correction to the
1997 tutorial on reed-solomon coding. Technical
Report CS-03-504, University of Tennessee, April
2003.

[25] J. S. Plank, K. M. Greenan, E. L. Miller, and W. B.
Houston. GF-Complete: A comprehensive open
source library for Galois Field arithmetic. Tech-
nical Report UT-CS-13-703, University of Ten-
nessee, January 2013.

[26] J. S. Plank, J. Luo, C. D. Schuman, L. Xu, and
Z. Wilcox-O’Hearn. A performance evaluation
and examination of open-source erasure coding li-
braries for storage. In FAST-2009: 7th Usenix Con-
ference on File and Storage Technologies, pages
253–265, February 2009.

[27] I. S. Reed and G. Solomon. Polynomial codes
over certain finite fields. Journal of the Society for
Industrial and Applied Mathematics, 8:300–304,
1960.

[28] J. K. Resch and J. S. Plank. AONT-RS: blending
security and performance in dispersed storage sys-
tems. In FAST-2011: 9th Usenix Conference on
File and Storage Technologies, pages 191–202, San
Jose, February 2011.

[29] S. Rhea, P. Eaton, D. Geels, H. Weatherspoon,
B. Zhao, and J. Kubiatowitz. Pond: The
OceanStore prototype. In FAST-2003: 2nd Usenix
Conference on File and Storage Technologies, San
Francisco, January 2003.

[30] L. Rizzo. Effective erasure codes for reliable com-
puter communication protocols. ACM SIGCOMM
Computer Communication Review, 27(2):24–36,
1997.

[31] M. W. Storer, K. M. Greenan, E. L. Miller, and
K. Voruganti. Pergamum: Replacing tape with en-
ergy efficient, reliable, disk-based archival storage.
In FAST-2008: 6th Usenix Conference on File and
Storage Technologies, pages 1–16, San Jose, Febru-
ary 2008.

[32] M. W. Storer, K. M. Greenan, E. L. Miller, and
K. Voruganti. POTSHARDS – a secure, long-term
storage system. ACM Transactions on Storage,
5(2), June 2009.

[33] L. Xu and J. Bruck. X-Code: MDS array codes
with optimal encoding. IEEE Transactions on In-
formation Theory, 45(1):272–276, January 1999.

8

