
Adding Aggressive Error Correction to a
High-Performance Compressing Flash File System

Yangwook Kang
Dept. of Computer Engineering

Hongik University
ywkang80@gmail.com

Ethan L. Miller
Storage Systems Research Center
University of California, Santa Cruz

elm@cs.ucsc.edu

ABSTRACT
While NAND flash memories have rapidly increased in both
capacity and performance and are increasingly used as a
storage device in many embedded systems, their reliability
has decreased both because of increased density and the use
of multi-level cells (MLC). Current MLC technology only
specifies the minimum requirement for an error correcting
code (ECC), but provides no additional protection in hard-
ware. However, existing flash file systems such as YAFFS
and JFFS2 rely upon ECC to survive small numbers of bit
errors, but cannot survive the larger numbers of bit errors
or page failures that are becoming increasingly common as
flash file systems scale to multiple gigabytes.

We have developed a flash memory file system, RCFFS,
that increases reliability by utilizing algebraic signatures to
validate data and Reed-Solomon codes to correct erroneous
or missing data. Our file system allows users to adjust the
level of reliability they require by specifying the number of
redundancy pages for each erase block, allowing them to
dynamically trade off reliability and storage overhead. By
integrating error mitigation with advanced features such as
fast mounting and compression, we show, via simulation in
NANDsim, that our file system can outperform YAFFS and
JFFS2 while surviving flash memory errors that would cause
data loss for existing flash file systems.

Categories and Subject Descriptors
D.4.2 [Operating Systems]: Storage Management; B.3.4
[Memory Systems]: Reliability, Testing and Fault-Tolerance

General Terms
experimentation,management,reliability

Keywords
NAND flash memory, non-volatile memory, file system, reli-
ability, compression

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’09, October 12–16, 2009, Grenoble, France.
Copyright 2009 ACM 978-1-60558-627-4/09/10 ...$10.00.

1. INTRODUCTION
Flash memory has become an important building block for

modern embedded systems because of its high performance,
low power consumption, shock resistance and non-volatility.
The recent development of multi-level cell (MLC) NAND
flash memory provides a great opportunity for embedded
systems and laptops to store larger amounts of information
in flash, thus replacing power-hungry, relatively unreliable
hard drives. The advent of 16 Gb flash chips and improve-
ments in solid state disk technologies have made flash mem-
ory as a storage medium has become more popular, but have
done little to improve the reliability of flash memory, result-
ing in portable storage that is highly vulnerable to both
small-scale and large-scale errors.

Although the capacity of single MLC flash chips has be-
come larger at an increasingly lower cost, the reliability of
flash memory has decreased because of the switch to MLC
from single-level cell (SLC) technology. Moreover, even a
constant per-bit failure rate has become more harmful; sys-
tems that maintain tens of gigabytes in flash are more likely
to suffer a hard error somewhere in the system. Currently,
MLC technology only specifies a minimum requirement for
an error correcting code (ECC), but does not specify a max-
imum protection level. Many flash controllers use an algo-
rithm that can detect 2 bit errors and correct 1 bit error
per 256–512 bytes [6]. Widely used flash file systems such
as YAFFS [2] and JFFS2 [30] either rely on the controller’s
ECC or generate a small ECC on the spare area—a small
(16–32 bytes per 256–512 byte page) region of additional
memory associated with each page—for both error detec-
tion and correction. While this approach may have been ac-
ceptable for relatively small flash memories that hold non-
critical, error-tolerant data such as photographs and digi-
tized music, the likelihood of a non-recoverable error lead-
ing to data loss in a multi-gigabyte file system based on
MLC flash devices is too high for many modern embedded
systems.

Another problem with current flash file systems is the way
that data is written to a page. Since the spare area or a por-
tion of each page is used to store metadata information that
describes the content of the page in most flash file systems, a
single flash page can only handle one kind of data no matter
how small it is. This can lead to an internal fragmentation
as page sizes continue to increase.

Additionally, YAFFS and JFFS2 do not have on-flash in-
dex structures that are used directly to locate information;
instead, they scan the flash media to build an index struc-
ture during the mounting process. The use of checkpointing

in these file systems can make the mounting process faster
after normal termination, but they still need to scan a large
amount of media after abnormal termination. As flash file
systems grow to hundreds of gigabytes, rescanning the entire
media to rebuild the file system index during mounting will
consume more time.

In this paper, we propose a new flash file system, RCFFS
(Reliable Compressing Flash File System), that was designed
to increase reliability by utilizing algebraic signatures to ver-
ify the correctness of pages and detect bit corruptions and
Reed-Solomon codes to correct corruptions at the page level.
By including entire parity pages along with data pages, the
file system can recover from a far wider range of errors than
would be possible with simple page-level ECC. RCFFS also
improves space efficiency by allowing a single flash page to
contain compressed information from multiple files, includ-
ing both data and metadata from the files. We show, via
simulation in NANDsim, that our file system performs sim-
ilarly to YAFFS and JFFS2 while surviving flash memory
errors that would cause data loss for existing flash file sys-
tems.

The rest of the paper is organized as follows. In Sec-
tion 2, we discuss previous flash file systems, and discuss
their strengths and weaknesses. Section 3 discusses how
RCFFS was designed to provide high reliability while sac-
rificing neither performance nor space efficiency, We then
describe the file system implementation on Linux in Sec-
tion 4. In Section 5, we show, using benchmarks on a sim-
ulated flash memory system, that RCFFS meets both the
reliability and performance goals for which it was designed.
Finally, we describe future work in Section 6 and summarize
our results in Section 7.

2. RELATED WORK
The recent availability of large, inexpensive flash memory

systems has resulted in a great deal of research on building
systems to manage them, either in the operating system or
at the flash memory module layer. Typically, this research
focuses on improving performance or dealing with the quirks
of using the block-erasable, write-limited medium of NAND
flash memory.

2.1 Flash Based File Systems
Many studies have explored the use of flash memory in file

systems over the past decade, using one of two approaches:
systems that use a flash translation layer (FTL), and flash-
aware file systems.

Most file systems in use today use an FTL [16] between the
raw flash and the file system. This approach enables legacy
file system to use flash memory as a block-based storage
device without any modification, with issues such as wear
leveling and mapping of logical blocks to physical blocks
handled in the flash device itself. However, since most file
systems are designed and optimized for disks and do not
consider flash memory characteristics, there are some limi-
tations in optimizing performance and providing reliability
in the FTL approach. Typical FTL-based systems only pro-
vide per-page reliability, since it can be difficult to spread
reliability across multiple pages when the FTL has little con-
trol over the pattern of page writes. Nonetheless, since FTL
performance is so critical to file system performance, there
have been several efforts to improve FTL performance both
by reducing writes [18] and by reorganizing the FTL to han-

dle writes more efficiently [7]. Recently, Agrawal, et al. did
a complete exploration of the parameters influencing a flash-
based SSD’s performance; however, their study explored de-
sign decisions more than FTL structures themselves [1].

To avoid problems with multiple translation layers, re-
searchers have developed flash-aware file systems such as
YAFFS [2] and JFFS2 [30]. Often, these file systems use log-
structured mechanisms [24]; for example, JFFS2 is a node
based log-structured system that supports compression of
data and metadata. Every page in JFFS2 contains a node
including the information about the content of the page.
However, because JFFS2 only maintains the optimized index
in main memory, its mounting time is slow because it must
build the index each time the file system is mounted. The
next version of JFFS2, UBIFS [13], uses a wandering tree
to support the on-flash index. Unlike other B+-trees, wan-
dering trees supports out-of-place update, in which modified
nodes of the tree are stored to another location. However,
each modified node requires one page, even if the size of the
node is very small. To address this issue, Kang, et al. de-
veloped the µ-tree [15], which packs several nodes that were
modified by the change of a single leaf node into one page.
RCFFS uses a modified version of a µ-tree to maintain the
on-flash index.

YAFFS is another widely used flash file system, with sev-
eral advantages over JFFS2 such as a small RAM footprint
and error correction mechanisms. Again, however, it lacks
an on-flash index, and, like other current file systems, relies
solely on the spare area in each page for both error detection
and correction, limiting its ability to correct large numbers
of in-page errors or survive the loss of a complete page.

Recently, there have been many flash file system propos-
als, each of which typically addresses one or more issues
including mounting time, garbage collection overhead, and
performance on large-scale flash memories. For example,
Lim and Park [19] describe a file system that focuses on
reducing mount time and garbage collection time. Scal-
eFFS [14] addresses mounting time and performance by us-
ing a new log-structured approach that maintains indexes
primarily on flash, rather than relying upon relatively scarce
RAM. ScaleFFS can scale to multi-gigabyte flash memories,
but does lacks support for compression and high levels of er-
ror correction. While this may be reasonable for multimedia
file systems with large, incompressible, error-tolerant files,
it is not well-suited for the large flash memories now being
used on embedded devices such as netbooks. While these
file systems address performance limitations of running in
flash memory, none of them explore techniques to increase
flash file system reliability, an issue of increasing importance
in multi-gigabyte file systems in mobile and embedded de-
vices.

2.2 Error Detection and Correction
Ensuring data integrity involves two processes: error de-

tection and error correction. Most flash controllers use a
derivative of a Hamming code [12] because of its low require-
ments on computation power and space and its simplicity.
While versions of Hamming codes can be built to detect and
correct any number of errors with sufficient resources, the
versions used in flash memories are limited to the spare area
in a page, and typically can detect up to two simultaneous
2-bit errors and correct single-bit errors per 256 or 512 bytes.

While this level of correction may have sufficed for smaller
devices and devices used in less critical applications such as
media storage, file systems demand higher levels of error de-
tection and correction. Thus, our approach leverages Galois
field-based Reed-Solomon codes at the page level to correct
entire pages that are found to have errors. This approach,
which has long been used in RAID systems [17], can correct
many more errors per page as long as a page can be identi-
fied as bad and there are parity pages to use to reconstruct
the “missing” page. This approach, termed intra-disk parity
has recently been used in disk-based storage systems to im-
prove RAID reliability [8] and to improve the reliability of
disk-based archival storage [28]. It has also been proposed
for use in flash memories [9] and is planned for use in Sun’s
ZFS file system.

Detecting corrupted pages in storage systems has a long
history, but most systems attempt to favor correction over
detection whenever possible, potentially leading to miscor-
rection. The result is “undetectable” errors; for example,
modern disk drives have an undetectable error rate of about
10−14 bits. In contrast, systems concerned with reliability
typically use cryptographic hashes such as MD5 [23] or SHA-
1 [3]. While it is possible to find pairs of blocks with the same
hash value [29], cryptographic hashes work well for detect-
ing bit corruption. However, we use Galois field-based alge-
braic signatures [20] to detect errors; as with cryptographic
hashes, algebraic signatures are sensitive to random bit flips,
though they are not cryptographically secure. Moreover, al-
gebraic signatures are homomorphic: if D0 ⊕ D1 ⊕ D2 = P ,
then sig(D0) ⊕ sig(D1) ⊕ sig(D2) = sig(P), making it easy
to verify both the correlation between Dj and sig(Dj) and
the agreement between signatures for a parity stripe, as was
done for both archival storage [28] and flash memory [11].
Algebraic signatures have the added advantage of facilitat-
ing low-cost scrubbing [25], making it possible to verify the
integrity of the flash memory in the background.

2.3 Compression
Log-structured file systems, such as those used for flash

memory, lend themselves well to compression. Burrows,
et al.provided on-line data compression in a disk-based log
structured file system by adding a map between a logical seg-
ment and a physical segment [5]. They introduced the con-
cept of a virtual logical segment that is bigger than the phys-
ical segment, to facilitate compression. When the logical
segment is fully filled, the segment is compressed and writ-
ten into the physical segment. Similarly, JFFS2 and UBIFS
both provide compression for both file data and metadata.
Instead of having a global map, a node on each page contains
the metadata information. However, neither can utilize the
remaining space in a page if the compression ratio was bet-
ter than expected or if the file was smaller than the page
size.

3. DESIGN
The primary design goals of RCFFS (Reliable Compressed

Flash File System) are to provide very high reliability, space-
efficiency as good or better than current flash file systems,
and maintain high performance. More specifically, RCFFS
is designed to use algebraic signatures to validate data and
Reed-Solomon codes to correct erroneous or missing data,
while preserving the high performance that flash file systems
have shown is possible. Unlike other file systems that use

only the small spare area on each page for both verifying
and correcting errors, RCFFS uses the spare area only for
verification, and incorporates parity blocks per each block
and segments for error correction.

In order to improve space-efficiency, RCFFS allows a page
to contain data from multiple files. This is difficult to do if
the spare area on each page is used for metadata; by keep-
ing file metadata in the “regular” page space, RCFFS can
pack more data into a single page and thus better utilize
the overall flash memory. Rather than using the spare area
for metadata, RCFFS uses a µ-tree to maintain an index
structure on flash, thus increasing the space efficiency over
wandering tree by putting all modified tree nodes from root
to leaf in a single page [15, 13]

In the remainder of this section, we first discuss the overall
structures of RCFFS. We then detail the data structures and
indexing mechanism that RCFFS uses to ensure both high
performance and high reliability, focusing on the key features
that distinguish RCFFS from earlier file systems.

3.1 RCFFS Structure
As with many file systems, RCFFS stores data and meta-

data in a log structure, since this approach leverages flash
memory’s inability to be updated in-place and requirement
for wear-leveling. The basic unit of writing in a log-structured
file system is a segment—a fixed size data chunk generated
when data is written to the flash memory. Unlike YAFFS
and JFFS2, however, RCFFS uses writeback to gather dirty
data in memory until there is sufficient dirty data to write
an entire segment or until a timeout threshold is reached,
unless the user explicitly requests synchronous writeback.
When dirty data is written, RCFFS organizes the data into
segments and flushes them sequentially.

Unlike segments in earlier log-structured file systems, seg-
ments in RCFFS are designed to ensure both reliability and
performance. Each segment in RCFFS consists of a set of
erase blocks, as shown in Figure 1; one of the erase blocks
is reserved for parity, and the last “regular” erase block con-
tains both regular data and per-segment information. When
RCFFS writes a segment, files are sorted by inode number
and written in order to the first n − 2 erase blocks of the
segment; the file system writes modified file data, metadata,
and updates to the µ-tree to the erase blocks, along with par-
ity information as described in Section 3.2. To ensure that
the file system remains consistent, the file system writes out
all of the modified data blocks and inode block for a file
before writing out any updated µ-tree blocks, ensuring that
a crash will never leave dangling pointers: if the system
crashes after writing the data but before writing the new
µ-tree blocks, the newly-written is not considered commit-
ted and the old µ-tree remains valid. While this approach,
which is similar to soft updates [21, 26], can leave data blocks
that are not referenced by the µ-tree, any “lost” data blocks
will be reclaimed during segment cleaning, never resulting
in corrupt data visible to the user.

Once the segment has been filled with file data and meta-
data, RCFFS writes segment summary information at the
end of the segment. This summary information, shown in
Table 1, includes reverse index nodes, segment usage nodes,
and segment information.

Maintaining an index on flash requires two kinds of index
structures. The first one provides a table that can look up
the physical location of a file block given an inode number

Erase block n-1
parity•••

Erase block n-1
data & metadata

segment
metadata

Erase block 2
data & metadata

Erase block 1
data & metadata

Erase block 0
data & metadata

data & metadata
reverse
index

segment
usage

segment
info

parity
page

data &
metadata

data &
metadata

data &
metadata

data &
metadata

data &
metadata

parity
page

Figure 1: Layout of a segment. Note that most blocks contain both data and metadata, and that the last
erase block is dedicated to parity. Each erase block also contains one or more parity pages to ensure that
corrupted data can be rebuilt.

Data Structure Description

File inode Contains modified time, owner, compression algorithm
Directory inode Contains directory entries

µ-tree node Locates physical locations of inodes

Segment usage node Cached copy noting the free space of all segments at the time this segment was written
Reverse index node Contains the keys of the data blocks written in this segment and their physical location for cleaner

Parity node Checks the consistency of the segment using Reed-Solomon and algebraic signature
Segment Info Contains static information of the file system and locations of important nodes in a segment

Table 1: Metadata contained in a segment. The first three items may be repeated as often as needed in a
segment, while the last four are written when the segment is committed to flash.

and offset within the file. RCFFS uses the µ-tree algorithm
to maintain and store this index data. A combination of
inode number, page index and flag indicating whether it is a
data block or metadata block is used as a key of each data or
metadata block. Given this key, the µ-tree returns a physical
address, which consists of the physical page number, page
offset and size. Page offset and size are necessary because
RCFFS uses compression by default, thus allowing a page
to contain multiple data pages.

The second type of index is a reverse index that is used by
the segment cleaner to identify data or metadata blocks on a
certain page. This is important because the cleaner must be
able to find live data in the target segment and modify the
corresponding µ-tree nodes during the cleaning process. In
our file system, this information, which includes the µ-tree
key and physical offset in the segment for each block in the
segment, is stored in the reverse index area of each segment.

Each segment also contains a summary of the usable space
of all segments in the file system at the time the segment
was written. This information is used by the cleaner to pick
appropriate segments to clean [4]. Rather than keep an ex-
act count of the space available in each segment, however,
the summary keeps just the high-order bits of the available
space; this approach saves space in the segment while elim-
inating the need to rescan the entire file system before run-
ning the cleaner.

Finally, each segment contains static information about
the file system and the locations of the important nodes in
a segment, including the most recent µ-tree root node and
the next segments to be written. This information is similar

to the superblock in traditional file systems; it is written
to each segment both for reliability and to reduce remount
time after a crash. In particular, storing the location of the
next segments to be written allows RCFFS to quickly iden-
tify segments that have been cleaned but not yet written,
addressing a shortcoming in many other flash file systems
that can only “clean” a single segment at a time. By facil-
itating background cleaning and tracking of free segments,
RCFFS can utilize periods of idle time to prepare the file
system for bursts of high bandwidth activity. In addition,
by recording information such as segment modification date,
the segment information region can help the file system re-
cover from catastrophic loss in which large parts of the file
system might be damaged.

3.2 Reliability
Existing flash file systems and FTL implementations use

the small spare area on each page to store an ECC which
is used to both detect and correct a small number of bit
errors in the page. Typically, this ECC can detect two bit
errors and correct one bit error per 256–512 bytes, but its
effectiveness is limited by the size of the spare area, which
must also be used for other metadata functions. Because of
the small size of the spare area, it is impossible to store a
code that can detect and correct more than a small number
of errors. Moreover, the added complexity of an ECC that
can handle more errors increases the complexity, and thus
the cost, of a flash controller.

To overcome the constraint on the ECC size imposed by
the small spare area and provide an aggressive error correc-

tion, RCFFS does not try to both detect and correct errors
using the spare area. Instead, RCFFS stores an algebraic
signature in the spare area that can detect bit errors with
very high probability—a k-bit algebraic signature is a (non-
cryptographic) hash function that detects any number of
random bit corruptions with probability 1−2k. RCFFS also
maintains extra pages that contain parity or Reed-Solomon
redundancy to correct errors in data and metadata pages,
as shown in Figure 2. Each erase block has a single parity
page, and there are one or more error correction pages across
each segment as well.

When the computed signature of the contents of a page
that has been read does not match the stored signature,
RCFFS notices the corruption and first tries to use the par-
ity page from the erase block to correct the error. This
correction is similar to that used in a RAID system: the
erroneous page is marked as “missing,” and the RAID algo-
rithm regenerates it by combining the remaining pages in
the erase block, including the parity pages. If an erase block
has k parity pages, the file system can recover locally from
errors in k different pages regardless of the number of bit er-
rors within each page. If, however, there are too many faulty
pages in the erase block, the file system must read the en-
tire segment and use both the data blocks and segment-wide
Reed-Solomon blocks to recover the corrupted pages.

While our current prototype does not correct individual
bit errors on a page using standard ECC mechanisms, such
correction works well with our page-level protection, as noted
by Greenan, et al. [9]. Correcting single bit errors using per-
page ECC results in fewer calls to correct corrupted pages
than using erase block-wide or segment-wide error correc-
tion, thus improving performance. Moreover, maintaining
algebraic signatures helps dramatically lower the occurrence
of miscorrections, since, as described above, miscorrections
are detected with very high probability and can be corrected
using page-level error correction.

Handling error correction in software across pages has sev-
eral advantages. First, the file system can select the appro-
priate level of error correction, even adjusting the level over
time. For example, a file system on a new flash device might
use only one or two Reed-Solomon blocks per segment, while
an older device with a higher error rate could dedicate 4–
5 such blocks, reducing storage capacity to provide higher
reliability to counter the higher error rates found in aging
flash memory devices. Second, page-level protection is far
less vulnerable to miscorrected pages because the algebraic
signature on each page will almost always detect corrupt
pages; if an undetected error rate of 2−32 is too high, the
system can go to a 48-bit or even 64-bit algebraic signature.
Third, shifting more complex codes to the main CPU as part
of the file system allows the file system to leverage the pro-
cessing power of the main CPU, which is almost certainly
faster than the processor running the flash firmware. Finally,
the file system can leverage its knowledge of larger-scale file
system structures to build more effective error-management
structures; the flash firmware can only see accesses one I/O
at a time.

In addition to providing on-demand error correction, RCFFS
can also provide a consistency checker to correct permanent
errors during system idle time [22, 10]. Because the algebraic
signature and Reed-Solomon code use the same underlying
Galois field, the operations of taking the algebraic signature
of a set of blocks and combining them via XOR or Reed-

Solomon commute: if fk(D0, D1, . . . , Dn−1) = Pk (i. e., fk

is a function to generate the kth parity block) and sig() is a
function to generate the algebraic signature of a block, then
fk ◦ sig ≡ sig ◦ fk. Thus, as described in Section 2.2, the
file system can run a quick scan to ensure that the signa-
tures within an erase block and segment are consistent by
running them through Reed-Solomon. While this checking
is quick and ensures the basic consistency that allows error
correction to proceed, it does not detect actual errors in the
pages themselves. This can present a problem since, unlike
disks, flash devices can accumulate bit corruption even when
the device is not being written. Thus, the full-consistency
checker actually reads each page as if a user were requesting
it, comparing it to the signature and repairing it if necessary.

Another type of error that can leave the file system in
an inconsistent state is abnormal termination due to power
failure or system crash. When such failures occur during
write, the segment might be written partially without the
segment metadata information. After a reboot from the
failure, RCFFS scans the spare area of all of the pages in
the partial segment, checking data integrity until it finds the
most recent valid parity page. If the signature of the parity
pages matches the XOR of the signatures of the data pages
in the erase block, we can safely assume that the erase block
was written correctly. When RCFFS finds the last valid
erase block, it is then able to find the last valid µ-tree node
in the erase block, allowing it to recover the maximum data
given what was actually written before the crash; a block
that is partially written will be discarded after reboot.

3.3 Fast Mounting
Since flash memory does not support in-place update,

metadata information cannot be written to a fixed location
as in disk-based file systems. As a result, most flash file
systems require a time-consuming scan to locate the most
recent metadata information, a process that takes time in
proportion to the size of the media. To reduce the time lost
to boot-time scanning on every startup, the most recent ver-
sion of YAFFS writes current file system status in memory
into flash; however, this approach only works after a normal
shutdown; system crashes still require a full scan. Newer
file systems such as ScaleFFS [14] have addressed this issue
by maintaining a global table that can be used to locate file
blocks.

In RCFFS, this process of metadata location can be done
more quickly by pre-allocating segments and writing the lo-
cations of the next k segments to be used along with a times-
tamp to the segment information area when the current seg-
ment is flushed. At mount time, RCFFS reads the segment
info area from the first segment on the flash memory and
retrieves the location of next k segments. It then quickly
jumps to the kth segment in the list and checks to see if
the segment is newer than the current one by comparing the
timestamp. If the kth segment is newer than the current
segment, it checks the next k segments stored in the kth
segment. If the segment is older, RCFFS checks other seg-
ments in the current list backwards to find the most recent
segment. In this case, it checks from k-1 to 1 until it finds
the segment that was written most recently.

Once the file system finds the most recent segment, all
information that is needed for mounting is stored in the
segment information structure in system memory and the

Data Block

Data Block

Data Block

Data Block

Signature Signature Signature Signature Signature

Inode

Data Block

Data Block

Data Block

µ-tree
node

Inode

Data Block

Inode

Data Block

•••

Signature Signature

Parity
Inode

Data Block

Data Block

Data Block

Figure 2: Layout of an erase block, including data, inodes, µ-tree and nodes. Signatures on each page ensure
that errors within a page can be detected; faulty pages can be corrected using the remaining (good) pages
and the parity page in each erase block.

most recent root µ-tree node, both of which are located in
the most recent segment.

3.4 Improving Space Efficiency
As previously discussed, RCFFS uses two approaches to

improve space efficiency. The first approach is to remove
internal fragmentation from pages. Currently, most flash
file systems such as YAFFS, JFFS2 and UBIFS use a page,
normally 2–4 KB, as the basic unit of allocation. In these file
systems, if the content to be written is smaller than a single
page, the free space in a page remains unused. In contrast,
RCFFS is designed to solve this issue by allowing a page to
have contain multiple data chunks from different files. To
allow the system to index those data chunks, we modified
the µ-tree to return a 〈pagenumber, pageoffset, size〉 tuple
instead of simply returning the page number.

The second approach used in RCFFS to ensure space ef-
ficiency is compression. As with other flash file systems,
RCFFS uses a block compressor such as that in the LZO
and deflate algorithms, which can take a 4 KB page as an
input. Since RCFFS can write compressed data pages back-
to-back in a single physical flash memory page, it can more
efficiently utilize the space than can existing compressing file
systems such as JFFS2 and UBIFS.

In addition, RCFFS supports write-back, which is a stan-
dard technique to delay write I/O. Like UBIFS, RCFFS does
not write dirty data to flash straight away, instead storing
dirty data in memory and flushing it later. As expected,
this technique reduces I/O traffic both by combining multi-
ple writes to the same location and by allowing RCFFS to
fully leverage compression and full-segment writes.

4. IMPLEMENTATION
We implemented RCFFS on Fedora 9 (Linux kernel 2.6.25)

as a file system module. Rather than use raw flash, we used
a NAND simulator called NANDsim to emulate NAND flash
memory on a development machine; this approach allows us
to exercise the error-handling abilities of RCFFS in a con-
trolled environment by generating random bit-flip and page
read errors.

RCFFS’s implementation includes a µ-tree and dedicated
read/write cache. µ-tree uses a key/value pair, each of which
is 64 bits long. The key consists of a 32 bit inode number,
31 bit page index and single bit flag indicating that the key
is metadata. The µ-tree value contains a 32 bit physical
address, 16 bit page offset and 16 bit data length; the page
offset and data length fields are used to store several dirty
(and subsequently compressed) pages from the in-memory
cache into a single flash page.

The µ-tree read cache maintains a LRU list of the root
node and other frequently accessed nodes because the root
node is accessed every time the file system looks up a data
or metadata block. Similarly, the µ-tree write cache gath-
ers dirty nodes in memory to absorb some write I/O. Dirty
data is added to the rb-tree, which is a I/O queue sorted
by physical page number, after all data pages of a file are
written or the µ-tree write cache becomes full. For the ex-
periments reported in Section 5, each cache contains 10 flash
pages; real implementations would likely have larger caches,
making the results in Section 5 somewhat conservative.

On a write request, RCFFS copies the user-written data
into the page cache and creates an inode if needed. Like
UBIFS and most disk-based file systems, dirty pages are
gathered in the page cache and flushed by a sync() or
fsync() system call, a periodic pd_flush() call, or by ex-
ceeding the threshold for the maximum number of dirty
buffers.

When flush begins, for each dirty page in the page cache,
RCFFS compresses the page, writes it into the write buffer
and creates a µ-tree node for the page. The write buffer is a
page-sized buffer that is used to collect multiple data pages
into one page. If the write buffer is fully filled with data,
it is added to the rb-tree in the Linux kernel in preparation
for being written to flash, thus batching flash pages so they
can be written in a large sequential I/O to improve file sys-
tem performance. When the number of nodes in the rb-tree
exceeds a threshold, RCFFS writes all of the write buffers
sequentially to flash. Any block-based compression algo-
rithm can be used in RCFFS; we chose a LZO compression
algorithm because it was already in use in the Linux kernel,
eliminating the need to port a new compression algorithm
into the kernel.

As noted in Section 3, each segment information region
contains the index of the next k segments to be allocated
as well as the creation time and physical location of the
root µ-tree node for fast mounting. In addition, the highest
inode number is stored in every µ-tree node, since the inode
number at the previous segment may be too small when a
partial segment occurs.

5. EVALUATION
In this section, we evaluate RCFFS using three set of per-

formance benchmarks and reliability tests. For performance
test, first, we measure mounting time increasing number of
small files. Then, we examine small file performance by
copying a 5K file several times. Finally, we measure large
file performance by running a benchmark that is used in [27].
In order to evaluate reliability of RCFFS, we inject bitflip

Figure 3: Mount time for YAFFS and RCFFS, in
milliseconds. Both file systems have mount times
below 40 ms for all of our experiments. These ex-
periments only tested cleanly shut down systems;
after a crash, YAFFS would have much longer mount
times.

and page read errors via NANDsim and run the large file
benchmark.

Our experiments were conducted on a Fedora 9 Linux vir-
tual machine, which has a single CPU, 512MB of RAM and
a 20GB hard disk. The NANDsim simulator is configured
to model a 128 MB NAND flash memory with a 2 KB page
size and 128 KB block size. The size of a segment is 2MB.
Both the number of redundancy pages for each block and
redundancy blocks for each segment is set to one.

5.1 Mounting Time
Figure 3 compares the mount time of YAFFS and RCFFS

as the file system is filled with small files. In theory, flash
file systems that do not have an on-flash index have to scan
the entire flash memory until they build the whole index
structure in memory. However, in practice, recent versions
of YAFFS writes a RAM summary of the file system status
to flash before shutting down, a process called checkpointing,
to avoid boot-time scanning. As a result, after a normal
termination, these two file systems have similar mounting
times. However, when a failure occurs, YAFFS still must
scan the media, a process that can take several seconds even
on a small flash memory. In contrast, RCFFS only needs
to scan the pages in a single segment—1024 pages in our
experiment—keeping mount time low.

5.2 File I/O Performance
Because RCFFS can take advantage of write-back, com-

pression and its policy of fragment avoidance, its perfor-
mance should be quite high. Countering this effect is RCFFS’s
need to generate redundancy pages, which occupy at least
two erase blocks per segment, and write those pages to flash.
In addition, our file system needs to check data integrity
whenever a read request comes in and calculate a signature
when writing a page. However, our experiments show that
RCFFS performs quite well, compared to YAFFS.

In order to measure performance under a bursty I/O re-
quest load, we use a large file benchmark program used by
Seltzer, et al. [27] to measure performance using various
kinds of read/write patterns. Table 2 shows the performance
results among three file system configurations. RCFFS comp

Figure 4: Postmark benchmark results. RCFFS is
more than twice as fast as YAFFS, and reaches a
throughput of 7500 transactions per second on the
“overall” mix.

compresses data pages using LZO compression, while RCFFS
nocomp does not use compression. RCFFS nocomp oc-

cupies more than twice as much space as RCFFS comp.
The increased size is due both to the lack of compression
and to the need for more segments to be written to flash in
RCFFS nocomp, which means more µ-tree pages and par-
ity pages. The added overhead of computing parity pages is
seen in write performance, which is a bit slower than YAFFS.
However, reads in RCFFS are comparable to YAFFS; the
computation of algebraic signatures for verification do not
significantly slow down page reads. As described in Sec-
tion 5.3, however, RCFFS is much more resistant to errors
than YAFFS, making the tradeoff of a bit of performance
for greatly improved reliability worthwhile.

For small file performance, we create a benchmark that
copies a 5KB file a thousand times and shuts down the file
system. The original file on ext2 is very small and will be
cached in the page cache and thus will not affect the per-
formance. On average, YAFFS takes 26.438 seconds and
RCFFS comp takes 25.779 seconds to complete this bench-
mark; the two file systems show similar performance. We
also measured metadata performance by running the Post-
Mark benchmark with 1000 files and 15000 transactions. As
Figure 4 shows, RCFFS outperforms YAFFS by a factor of
2.5.

5.3 Reliability
To test the ability of RCFFS to correct errors in flash, we

simulated three kind of flash errors using NANDsim. First,
we generated up to 1000 random bitflip errors per page, a
volume far higher than the number of bits ECC can usually
detect. Second, we generated some pages that lose data due
to page failure. Finally, we terminated the file system during
a write to emulate power failure. We measure the time to
recover one page error while running a large file benchmark.
We made the file system to bypass the page cache when a
read request comes in to generate more errors at a time.

For random bitflip tests, NAND ECC only provides 1 bit
error correction, while RCFFS recovered all error pages re-
gardless of the number of error bits generated by NAND-
sim. On average, recovery of a corrupted page using the
parity page in the same block takes 24.7 ms. If the file sys-
tem must use the segment-wide parity block, recovery takes

Table 2: Large file performance.
I/O pattern YAFFS RCFFS comp RCFFS nocomp

Sequential write 2.074 sec 1.643 sec 2.703 sec
Sequential read 0.012 sec 0.002 sec 0.001 sec
Random write 0.987 sec 0.792 sec 2.155 sec
Random read 0.085 sec 0.168 sec 0.078 sec

Re-read 0.001 sec 0.001 sec 0.001 sec

space occupied 52356K (51MB) LZO compression: 19584K (20MB) No compression: 119424K (116MB)

more than twice as long: 57ms. Unlike standard spare area
ECC, RCFFS was also able to recover entire pages that had
been lost, as would occur due to write failure or failure of
an entire flash module in a multi-module flash disk.

In our configuration, one parity page for each page and one
parity block for each segment shows sufficient error recov-
ery performance. However there might be some cases that
require more than one parity page per erase block or par-
ity block per segment. Since Reed-Solomon codes support
multiple parity blocks, we we can easily improve the level of
reliability by adding more more redundancy parity pages per
each block and segment. Additionally, as described in Sec-
tion 3, we can still use a relatively simple ECC on each page
to correct a single error, reducing the need to use page-level
error correction.

Finally, RCFFS was also able to recover well from unex-
pected failure such as that caused by abnormal termination
and power failure, If the file system is terminated unexpect-
edly, RCFFS can recover pages until the last erase block;
pages written after the last erase block are lost. In the worst
case, this corresponds to losing all of the data up to one erase
block; however, this corresponds to a power failure during
a segment write, a situation that is handled poorly by most
flash file systems.

6. FUTURE WORK
While RCFFS works well and is integrated into the ker-

nel, we have not yet implemented the garbage collector and
consistency checker. We expect the garbage collector to be
similar to that implemented in LFS [24], and more sophis-
ticated than that implemented in flash file systems such as
YAFFS that only try to clean sufficient space to free a sin-
gle segment at a time. In addition to proactively fixing
corrupted pages in flash, the consistency checker may be
able to mark pages that have permanent errors so that they
are not reused. Thus, the consistency checker can improve
both long-term performance and reliability by correcting er-
rors before they are demand fetched by the user and en-
suring that corruption does not build up to the point that
RCFFS cannot correct it. Additionally, we are exploring
an approach that would combine the garbage collector and
consistency checker.

The current version of RCFFS only compresses data pages,
but we can consider compressing µ-tree pages and other
nodes including parity nodes. This might decrease the over-
all performance; however, we believe that we can make the
gap small by increasing the read cache.

Finally, we must work around issues with the µ-tree’s
maximum height, which limits scalability. We are consid-
ering algorithms that remove this limitation while retaining
the space-efficiency of a µ-tree.

7. CONCLUSIONS
We have shown that improving reliability of flash-based

file systems need not come at a high cost. RCFFS uses
a combination of Galois field-based signatures and parity
and Reed-Solomon redundancy pages to nearly eliminate the
possibility of small-scale and large-scale errors corrupting a
flash file system. By removing internal fragmentation within
a page and using compression, we dramatically improved
space efficiency. To facilitate fast mounting, we implemented
the next-k-segment algorithm, which can reduce the number
of pages to be scanned even after an abnormal file system
termination. Even with these improvements, RCFFS per-
forms comparably to existing file systems such as YAFFS.

RCFFS demonstrates that an error-resistant file system
can perform at a speed comparable to existing flash file
systems while providing better reliability and requiring less
space in relatively expensive flash memory. Given the low
cost of providing strong error protection, there is no longer
any reason to leave flash file systems vulnerable to the in-
creasing levels of corruption present in multi-gigabyte flash
memories.

8. ACKNOWLEDGMENTS
We would like to thank Kevin Greenan and other col-

leagues in the Storage Systems Research Center for their
input and guidance. Ethan Miller was supported in part
by the Department of Energy’s Petascale Data Storage In-
stitute under award DE-FC02-06ER25768. Support for this
research was also provided by a gift from NetApp, and by
the generous support of the SSRC’s industrial sponsors.

9. REFERENCES
[1] Agrawal, N., Prabhakaran, V., Wobber, T.,

Davis, J. D., Manasse, M., and Panigrahy, R.

Design tradeoffs for SSD performance. In Proceedings
of the 2008 USENIX Annual Technical Conference
(June 2008).

[2] Aleph One Ltd. Yaffs: Yet another flash file system.
http://www.yaffs.net.

[3] Anonymous. Secure hash standard. FIPS 180-2,
National Institute of Standards and Technology, Aug.
2002.

[4] Blackwell, T., Harris, J., , and Seltzer, M.

Heuristic cleaning algorithms in log-structured file
systems. In Proceedings of the Winter 1995 USENIX
Technical Conference (Jan. 1995), USENIX,
pp. 277–288.

[5] Burrows, M., Jerian, C., Lampson, B., and

Mann, T. On-line data compression in a
log-structured file system. In Proceedings of the 5th
International Conference on Architectural Support for

Programming Languages and Operating Systems
(ASPLOS) (Boston, MA, Oct. 1992), pp. 2–9.

[6] Chen, S. Types of ecc used on flash.
http://www.spansion.com/application_notes/

Types_of_ECC_Used_on_Flash_AN_01_e.pdf, 2007.

[7] Choi, H. J., Lim, S.-H., , and Park, K. H. JFTL:
A flash translation layer based on a journal remapping
for flash memory. ACM Transactions on Storage 14, 4
(Jan. 2009).

[8] Dholakia, A., Eleftheriou, E., Hu, X.-Y.,

Iliadis, I., Menon, J., and Rao, K. K. A new
intra-disk redundancy scheme for high-reliability
RAID storage systems in the presence of
unrecoverable errors. ACM Transactions on Storage 4,
1 (May 2008), 1–42.

[9] Greenan, K. M., Long, D. D., Miller, E. L.,

Schwarz, S.J., T. J. E., and Wildani, A. Building
flexible, fault-tolerant flash-based storage systems. In
Proceedings of the Fifth Workshop on Hot Topics in
System Dependability (HotDep ’09) (June 2009).

[10] Greenan, K. M., and Miller, E. L. Reliability
mechanisms for file systems using non-volatile memory
as a metadata store. In 6th ACM & IEEE Conference
on Embedded Software (EMSOFT ’06) (Seoul, Korea,
Oct. 2006), ACM.

[11] Greenan, K. M., and Miller, E. L. PRIMS:
Making NVRAM suitable for extremely reliable
storage. In Proceedings of the Third Workshop on Hot
Topics in System Dependability (HotDep ’07) (June
2007).

[12] Hamming, R. W. Coding and Information Theory,
second ed. Prentice-Hall, Englewood Cliffs, New
Jersey, 1986.

[13] Hunter, A. A brief introduction to the design of
UBIFS. http://www.linux-mtd.infradead.org/doc/
ubifs_whitepaper.pdf.

[14] Jung, D., Kim, J., Kim, J.-S., and Lee, J.

ScaleFFS: A scalable log-structured flash file system
for mobile multimedia systems. ACM Transactions on
Multimedia Computing, Communications and
Applications 5, 1 (Oct. 2008).

[15] Kang, D., Jung, D., Kang, J.-U., and Kim, J.-S.

µ-tree : An ordered index structure for nand flash
memory. In 7th ACM & IEEE Conference on
Embedded Software (EMSOFT ’07) (2007),
pp. 144–153.

[16] Kawaguchi, A., Nishioka, S., and Motoda, H. A
flash-memory based file system. In Proceedings of the
Winter 1995 USENIX Technical Conference (New
Orleans, LA, Jan. 1995), USENIX, pp. 155–164.

[17] Kenchammana-Hosekote, D. R., He, D., and

Hafner, J. L. REO: A generic RAID engine and
optimizer. In Proceedings of the 5th USENIX
Conference on File and Storage Technologies (FAST)
(San Jose, CA, Feb. 2007), Usenix, pp. 261–276.

[18] Kim, H., and Ahn, S. BPLRU: A buffer management
scheme for improving random writes in flash storage.
In Proceedings of the 6th USENIX Conference on File
and Storage Technologies (FAST) (2008), pp. 239–252.

[19] Lim, S.-H., and Park, K.-H. An efficient NAND file
system for flash memory storage. IEEE Transactions
on Computers 55, 7 (July 2006), 906–912.

[20] Litwin, W., and Schwarz, T. Algebraic signatures
for scalable, distributed data structures. In
Proceedings of the 20th International Conference on
Data Engineering (ICDE ’04) (Boston, MA, 2004),
pp. 412–423.

[21] McKusick, M. K., and Ganger, G. R. Soft
updates: A technique for eliminating most
synchronous writes in the Fast File System. In
Proceedings of the Freenix Track: 1999 USENIX
Annual Technical Conference (June 1999), pp. 1–18.

[22] Miller, E. L., Brandt, S. A., and Long, D. D. E.

HeRMES: High-performance reliable MRAM-enabled
storage. In Proceedings of the 8th IEEE Workshop on
Hot Topics in Operating Systems (HotOS-VIII)
(Schloss Elmau, Germany, May 2001), pp. 83–87.

[23] Rivest, R. The MD5 message-digest algorithm.
Request For Comments (RFC) 1321, IETF, Apr. 1992.

[24] Rosenblum, M., and Ousterhout, J. K. The
design and implementation of a log-structured file
system. ACM Transactions on Computer Systems 10,
1 (Feb. 1992), 26–52.

[25] Schwarz, T. J. E., Xin, Q., Miller, E. L., Long,

D. D. E., Hospodor, A., and Ng, S. Disk scrubbing
in large archival storage systems. In Proceedings of the
12th International Symposium on Modeling, Analysis,
and Simulation of Computer and Telecommunication
Systems (MASCOTS ’04) (Oct. 2004), pp. 409–418.

[26] Seltzer, M., Ganger, G., McKusick, M. K.,

Smith, K., Soules, C., and Stein, C. Journaling
versus soft updates: Asynchronous meta-data
protection in file systems. In Proceedings of the 2000
USENIX Annual Technical Conference (June 2000),
pp. 18–23.

[27] Seltzer, M., Smith, K. A., Balakrishnan, H.,

Chang, J., McMains, S., and Padmanabhan, V.

File system logging versus clustering: A performance
comparison. In Proceedings of the Winter 1995
USENIX Technical Conference (1995), pp. 249–264.

[28] Storer, M. W., Greenan, K. M., Miller, E. L.,

and Voruganti, K. Pergamum: Replacing tape with
energy efficient, reliable, disk-based archival storage.
In Proceedings of the 6th USENIX Conference on File
and Storage Technologies (FAST) (Feb. 2008).

[29] Wang, X., Yin, Y. L., and Yu, H. Finding collisions
in the full SHA-1. Lecture Notes in Computer Science
3621 (2005), 17–36.

[30] Woodhouse, D. The journalling flash file system. In
Ottawa Linux Symposium (Ottawa, ON, Canada, July
2001).

