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Abstract—Power is the greatest lifetime cost in an archival
system, and, as decreasing costs make disks more attractive than
tapes, spinning disks account for the majority of power drawn. To
reduce this cost, we propose reducing the number of times disks
have to spin up by grouping together files such that a typical
spin-up handles several file accesses. For a typical system, we
show that if only 30% of total accesses occur while disks are still
spinning, we can conserve 12% of the power cost. We classify
files according to directory structure and see access hit rates of
up to 66% for a power savings of up to 52% of the power cost
of spinning up for every read in easily-separable workloads.

I. INTRODUCTION

Archival systems are rapidly moving beyond the realm of

corporate filing cabinets and into to the realm of personal, and

hence cultural, memory banks. Pundits say that we are seeing

the first generations that record their entire lives and expect this

data to be digitally stored perpetually and inexpensively [18,

28]. According to Gantz et al., 281 exabytes of digital informa-

tion was created in 2007, and they expect this number to grow

tenfold by 2011 [13]. While the majority of this personal data

begins life as data in active use, over time people lose interest

in vacation photos and scanned receipts and this data ends up

unconsciously filed away yet living among actively used data.

Although this data is never explicitly archived, accesses to this

data gradually start to resemble an archival workload.

Research in archival systems has typically assumed a “write-

once, read-maybe” workload. Real traces are hard to come

by, so a significant body of work exists using simulators that

assume that reads and overwrites are relatively rare. Real

workloads, however, may have significant numbers of reads

and overwrites in an area of the system that is “hot”. Many

workloads that are considered archival may be susceptible to

a quick change in status from archival to active due to a

variety of reasons such as periodic audits, a current event,

or a renewed research interest. This bursty activity may be

disproportionately costly in archival systems that assume most

disks are idle most of the time.

We propose to approach this problem by taking a page from

the mental model of memory and using semantic tagging to

store similar data across the same sets of devices. Our goal

is to group data to reduce the percentage of disk accesses

that result in spin-ups and thus increase power efficiency and

reliability in a more realistic archival system. We group files

into access groups, defined as a set of files that are likely to be

accessed within a short time of each other. We use both given

and automated classifications to create our access groups and

find that if the access group is left spinning for 50 seconds after

a spin-up, enough subsequent reads are caught by the spinning

access groups that the power cost is up to 52% lower than the

alternatives of spinning up for every read or always leaving

disks spinning.

We categorize workloads that gradually drift towards

archival accesses as archival-by-accident. Archival-by-

accident workloads differ from traditional workloads in

that there may be changing subsets of the system that see

“active” use while much of the remainder sees a more

traditional archival workload with few reads or writes. A

pressing example of an archival-by-accident system is the

World Wide Web. Recent studies have shown that the top

10 websites account for 40% of web accesses, and the drop

off is exponential instead of long tail [17]. The prevalence

of archival-by-accident systems is a strong contemporary

motivation for addressing this problem at a broader scale than

previous work in hierarchical storage management [14]. We

also know that typical storage systems can not cope with the

scale of archival data [2]. Handling these heterogeneous and

archival-by-accident systems is going to be the next challenge

for designers of archival systems.

One of the primary features of an archival-by-accident

workload is that a portion of the data could be in active use

while most of it remains dormant. We see an example of this in

Section V-A, which demonstrates how web automated search

indexers can cause a cluster of reads that bombard an other-

wise rarely accessed, archival-by-accident system. This paper

examines a variety of different groupings to show how group

size and makeup affects the power footprint. The remainder

of this paper covers relevant background, our system design,

and our preliminary experimental results accompanied by a

discussion of current research directions.

II. BACKGROUND

Power management for mobile systems and sensor networks

relies on spinning the disk as little as possible to conserve

scarce resources. A significant body of work shows that

caching, and from there data arrangement, has a strong impact

on the energy footprint of single-disk systems. [9, 11, 23].

Helmbold et al. point out that for mobile systems, an adaptive

disk spin-down rate is superior to a fixed rate, and we intend

to incorporate adaptive disk spin down into future work [15].



Conserving power in archival storage systems is another

well researched problem. The pioneering project in this area

was MAID, which leaves disks idle when they were not in

use [5]. MAID, however, works best when accesses are few

and far between, so the power saved offsets the increased

power consumption and loss in disk lifetime from having more

spin-ups. Localizing related data and metadata on the same

cylinder group to reduce fragmentation was a part of original

Berkeley Fast File System [19]. Essary and Amer provide a

strong theoretical framework for power savings by dynami-

cally grouping blocks nearby on a disk [11]. Other predictive

methods have shown good results by offering the choice of

“no prediction,” allowing a predictor to signal uncertainty

in the prediction [1]. We extend this work by providing a

realistic prediction mechanism and semi-permanent groupings,

reducing the need for constant prediction. Paris et al. show that

files in most workloads have stable access patterns [21].

Though workloads such as HPC are known to be bad

candidates for any technique that exploits idle time [3],

Narayanan et al. show that significant idle periods exist in

enterprise workloads, indicating that our technique may apply

outside archival systems [20]. They go on to say that access

stability could be exploited by grouping similar files together.

Performance has been the primary focus for a number of

systems that have looked at access history and frequency [7,

26].

Several projects incorporate caching into archival storage.

These caches can be based on temporal locality [5] or file

or block-level popularity [22]. Studies show that for systems

with low request rates, caching reads and writes significantly

improves the power efficiency of the system [20]. One major

vulnerability of our methodology is that a small group of

files in disparate access groups might start getting accessed

repeatedly for a burst. In this case, we could follow the

lead of PDC [22] and use a multi-queue caching scheme to

keep popular files or access groups in a persistent, always-

on cache. The impact of caching popular access groups could

be especially interesting for workloads without regular access

patterns, where we expect to not have many periods of low

disk activity.

III. SYSTEM DESIGN

The only physical requirement for our system is that there

exist enough devices for groups to be maintained and grown

on separate devices. The disks are accompanied by an index

server that handles the mapping of files to access groups.

Multiple, hierarchical index servers may be required in a

larger system. OSDs such as Pergamum are ideal because they

have the added ability to use on-board NVRAM for read and

write caching, allowing for a smaller main index and write-

offloading [27].

After an initial setup period, we split our data into access

groups. These groups could be formed around a variety of

semantic or incidental labels such as timestamp, filesystem

placement, writer, filetype, the authors in a LATEX document,

etc. These groups may be dynamic, so files must be able to

move as access patterns change. Section IV goes into more

detail of how these groups are determined. Access groups do

not share hardware, and when any data is read from an access

group the entire group is spun up and left on for a set amount

of time. We currently set the time to 50 s [8].
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Fig. 1. Typical system components: disks, cache, and index server

There are a few additional, common storage system features

that benefit this sort of power management. One obvious

concern is that a flash crowd could focus on just one element

of an access group, leaving the rest of the group spinning for

no benefit. This issue is easily handled with a modest read

cache. A simple LRU cache, such as PDC uses, handles this

issue [22]. While this is less of an issue in a classic archival

workload, a modern archival or archival-by-accident workload

needs a level of caching to soften the impact of an influx of

accesses to a data set caused by anything from a news event

to a unexpected mention in a major blog.

Figure 1 shows the design of a basic system that uses access

groupings. The index server stores the mapping between files

and access groups and calculates the appropriate access group

for an incoming file. If these access groups are stored on

OSDs, the index server can treat groups as atomic entities

and rely on the OSDs to index files within the group. When

data is read, the data is first checked for in the cache. If there

is not a cache hit, the index server identifies the access group

that the indexed copy of the data is on and sends the read to

the appropriate group of disks in addition to copying it into

the cache.

Data to be written is sent to the index server. The index

server classifies the incoming file or files using techniques such

as support vector machines or component analysis to chose

the appropriate access groups for the files. If a file group runs

out of disk space, either disks are added or the file group is

split. The standard approach is to assume that archival systems

have enough excess capacity that empty disks will typically be

available [16, 29]. However, we have found that smaller access

groups have better power savings outcomes. Small groups also

make better use of hardware. We intend to explore splitting

groups in our future work.



IV. ACCESS GROUP CLASSIFICATION

The amount of power saved depends on the classification

scheme used to sort files into access groups. DGRAID groups

similar blocks (defined as being blocks from the same file) on

the same device to isolate faults [25]. A similar natural group-

ing exists between files in a directory or on a configuration

path. Several types of similarity between files can lead to an

increase in the probability of correlated accesses. For example,

the setup files for a given application are likely to always be

accessed in fast succession or a programmer working on a

project is likely to open up files from the same group in his

IDE for the duration of the project. We believe these types of

correlations occur throughout real workloads.

We focus on archival-by-accident systems such as personal

data or the Internet archive where accesses are more frequent

but the overall workload still exhibits archival characteris-

tics [24]. These interactive archival systems have the most

potential for gain from any techniques that group accesses and

reduce spin-ups, since if the data is effectively never accessed

any improvements are very hard to justify after migration or

implementation costs are considered.

Certain types of storage systems, such as those used for

scientific data or public records, contain data with a relatively

small number of natural groupings that correlate with how

the data is later accessed. Other workloads contain data that

is strongly tied to a particular application, leading to natural

groupings of data that are accessed together.

Several schemes have been proposed to identify these

groupings. In this paper, we concentrate on identifying po-

tential power savings, so we use labels that are pre-defined

in our data set. For demonstration, we also used principal

component analysis on the full-text of the data and derived

one group (“Site”) automatically from one data set.

In future work, we intend to use support vector machine

classification. Support vector machines (SVMs) are a common

method to classify non-linear data by bisecting the dataset

with a series of hyperplanes [10]. One of the primary draws

of SVMs is that although they involve solving a quadratic

optimization problem, the problem only has to be solved once

to form the O(labels) kernel matrix that is used for future

classifications. Online SVMs have the ability to incrementally

add or remove data and recalculate classifications in O(1) [4,

12]. We expect the workload to change over time, making

an algorithm that allows us to cheaply recalculate our classi-

fications attractive. Additionally, since the size of the kernel

matrix depends on the size of the label space instead of the

size of the dataset, this is a promising technique for keeping

the index manageable in a petascale or larger archival system.

V. EXPERIMENTS

We analyzed two static file access traces to determine the

magnitude of power savings to be gained from pursuing this

idea. All analysis in this work is at the file level.

The first data set is from the California Department of Water

Resources. Our data consists of 90,000 queries to a record

store from 2007 through 2009. We make the assumption that

Fig. 2. Power Savings, Hit Rate, and Singleton Rate for Various Classifica-
tions

queries correspond to record accesses. The data set is pre-

grouped, and the grouping labels we consider for each access

are “Timestamp”, “Site” “Site Type”, and “District.” These

groupings are analogous to directory structure. The dataset

provided an additional grouping, “Year”, that we chose not to

use because it is inconsistently applied.

Though many access group classification schemes are valid

for our data, we chose to use a pre-defined partitioning for

our experiments to focus on the potential for power savings.

Our other data set was a database of vital records from

Washington state where records are labeled with one of many

type identifiers (e.g. “Birth Records”, “Marriage Records”).

We examined 5,000,000 accesses from 2007 through 2010

to a 16.5 TB database. Our goal was to examine the power

ramifications of a preliminary implementation of the design

proposed in Section III. In particular, we wanted to see

if semantic data placement increases power efficiency in a

system where disks are in a low-power mode or powered off

entirely much of the time.

Outside of the minimal overhead of the index servers, we

can do a quick calculation to show the value of working in

this direction. Suppose a spin-up costs 100 J while leaving the

disk on costs 3 J/sec ([6]) and disks are left on 50 s after an

access in hopes of catching another access to the same group.

In a system without any groupings, 100 accesses would cost:

p = 100 × (100 + (3 × 50)) = 25000 J

In a system where even 30% of these accesses hit an already

on filegroup, the power requirement falls to

p ≤ [70 × (100 + (3 × 50)) + 30 × (3 × 50)] ≤ 22000 J

The inequality is necessary because we do not know how far

into the 50 s period a subsequent access occurs. This shows

that 30% hit rate, which we see in our data, results in at least

a 12% power savings.
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Fig. 3. Access patterns for the Water and Washington datasets with and without top accessors

Figure 2 shows the percentage of accesses that hit a spinning

file group (Hit), the percent that caused a full spin period

without a subsequent hit (Single), and the power savings

compared to spinning up the disk on demand. While the

Water Data Set is only 2.3 GB, the access patterns are still

meaningful because they are independent of the data size.

This data is also a good test because it attaches predefined

groupings such as “Site Type” to each file.

If we break up the data into 7 disjoint groups based on

site type and calculate the hit rate, defined as the number of

accesses made within 50 s of each other, we find that leaving

our disks spinning would have covered 63.5% of accesses,

as we see in Figure 2. Figure 2 also shows the impact of

singles on the power savings, especially on larger groups such

as “Site”. This is logical since each of those is a demonstration

of our worst case, where a single access costs a spin-up and a

full 50 s of additional active drive time for no benefit (though

this time could be used for scrubbing and offloaded writes).
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Figure 2 shows the power saved with our method versus

spinning up disks as needed, leaving them on for a fixed

period of time, and then powering them off. For a different

perspective, Figure 4 shows the power savings over time

compared to a system with always-on disks. Though these

Label # of Groups

District 9

Site Type 7

Site 680

TABLE I
WATER QUALITY GROUP SIZES

disks avoid spin-up costs, the batched nature of the accesses

make leaving disks spinning a poor method of saving energy.

The spike near Day 700 is caused by an influx of queries from

a search indexer. The major drawback of this approach is that,

Fig. 5. Effect of Indexers on % of Power Saved.

assuming all disk groups are equal, disks that do not have

subsequent accesses will be left on longer than they otherwise

would have been.

A. Indexers

Both data sets had strong spikes in their access patterns

(Figure 3). Figure 5 shows the effect of removing a small

percentage of the highest accessors in the water dataset by

selecting the most active IP addresses. Based on whois data,

these IPs all belonged to a search engine. As we develop this

project further, we intend to take into account I/O activity

needed for indexing. The Washington dataset’s spike is a good

example of a case where our method would save a significant

amount of resources.



VI. DISCUSSION

Based on this preliminary work, we believe that certain

workloads could show significant power savings if files are

grouped on disk based on semantic similarities. In addition

to archival-by-accident systems, we expect that both disk and

tape-based archival systems will also see reduced spin-ups or

tape-mounts using access groups, though the magnitude of

savings will likely be lower.

Though we do not explicitly model writes, we presume

that writes in our archival-by-accident workloads can be offset

with the cache located either on the index server or a access

local group controller [20]. Writes will then be distributed

among the disks in the access group when the access group

is spinning for a read. We also recommend a read cache to

handle repeated, consecutive accesses to a single file, which

reduces the power footprint of a flash crowd. We expect that

the overall performance impact will be limited after groups

are determined. Also, any computation for classification could

be distributed across the nodes in an OSD cluster.

In this paper, we described archival-by-accident workloads

and provided a case for why they are important to the study

of archival systems. We describe a technique to group data

such that fast, consecutive accesses to the same access group

do not need an extra disk spin-up, and we showed that the

potential power savings of this method is significant, especially

in data sets that are automatically indexed. We are currently

exploring algorithms for group identification and looking at

the reliability implications of access grouped systems.
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