
Using Comprehensive Analysis for
Performance Debugging in Distributed

Storage Systems

Technical Report UCSC-SSRC-07-05
May 2007

Andrew Leung Eric Lalonde Jacob Telleen
aleung@cs.ucsc.edu elalonde@cs.ucsc.edu jtelleen@cs.ucsc.edu

James Davis Carlos Maltzahn
davis@cs.ucsc.edu carlosm@cs.ucsc.edu

Storage Systems Research Center
Baskin School of Engineering

University of California, Santa Cruz
Santa Cruz, CA 95064

http://www.ssrc.ucsc.edu/

Using Comprehensive Analysis for Performance Debugging inDistributed
Storage Systems

Andrew Leung Eric Lalonde Jacob Telleen James Davis Carlos Maltzahn
University of California, Santa Cruz

{aleung,elalonde,jtelleen,davis,carlosm}@cs.ucsc.edu

Abstract

Achieving performance, reliability, and scalability
presents a unique set of challenges for large distributed
storage. Debugging issues can be daunting given the
scale of these systems. Recent work has focused on fine-
grained performance analysis; this insufficient for build-
ing a complete understanding of the system. To identify
problem areas, there must be a way for developers to have
a comprehensive view of the entire storage system. That
is, users must be able to understand both node specific
behavior and complex relationships between nodes.

We present a distributed file system profiling method
that supports such analysis. Our approach is based on
combining node-specific metrics into a single cohesive
system image. This affords users two views of the stor-
age system: a micro, per-node view, as well as, a macro,
multi-node view, allowing both node-specific and com-
plex inter-nodal problems to be debugged. We have im-
plemented a prototype profiler in the Ceph distributed file
system with a focus on efficiency, portability, and scalabil-
ity. We visualize the storage system by displaying nodes
and intuitively animating their metrics and behavior al-
lowing easy analysis on complex problems. We evaluate
the overhead and scalability of our prototype profiler and
find it contributes little overhead and easily scales to stor-
age systems of over 1,000 nodes. Our visualization has
allowed us to uncover several important performance is-
sues within Ceph, ranging from poor load management to
supringly strong correlation between, supposedly decou-
pled, metadata and data operations.

1 Introduction

The complex nature of distributed storage increases de-
bugging complexity. Moreover, performing root-cause
analysis is complicated in large-scale storage systems
where data and load are highly decentralized and the num-
ber of possible causes is large. A single I/O request can

traverse user and kernel-level code on many different ma-
chines, and its performance is dependent on many factors
such as load and cache state. This makes understanding
and debugging file system behavior extremely difficult.

Distributed storage performance have two classifica-
tions: node-specific issues (problems either occurring at,
or relevant to, a single node) and inter-node issues (prob-
lems caused by relationships with other nodes). De-
bugging node-specific problems has been researched for
many years with much success [2, 5, 13, 16, 28]. Under-
standing inter-node problems has become an interesting
challenge explored more recently [3, 8, 10–12,16, 17, 22,
24]. The key problem facing current approaches is an
inability to achieve comprehensive analysis of theentire
storage system. In particular, a complete view of the stor-
age system includes all node-specific events, as well as,
complex inter-node events.

Understanding inter-node problems has proven difficult
because these problems are: (1) distributed, the source of
a problem may be far removed from where its effect is
observed, (2) opaque, the number of nodes obfuscates the
problem source, and (3) sporadic, the problem may only
occur on a few nodes or only under specific workloads.
For example, storage deviceA’s high I/O latencies may
be due to local performance issues or may be caused by
other nodes.A’s performance problems may be the re-
sult of another device mirroring data ontoA, A replicating
data onto a slower device, orA having to perform recov-
ery caused by another device failing. We assert that in or-
der to fully understand and debug distributed storage, both
node-specific and inter-node events must be analyzed.

Profiling is a common technique for identifying per-
formance issues, understanding behavior, and debugging
problems in any system. Current profiling techniques for
distributed systems take a fine-grained approach via activ-
ity tracking and resource accounting. These have proven
useful in revealing single-path bottlenecks and building
workload models. However, such a fine-grained approach
faces difficulties when attempting to correlate inter-node

relationships with performance. In this case both micro
(node-specific) and macro (inter-node) analysis of the sys-
tem is necessary to achieve a complete understanding of
performance.

The current standard for visualizing system perfor-
mance is to log and graph relevant performance counters.
This is appropriate when seeking knowledge of individual
metrics, but as the size of a system grows, the usefulness
of these techniques diminishes. For example, users can
easily view the throughput of any single node as a graph
and be satisfied, but the log and graph approach fails when
the goal is to convey more complex concepts such as how
an individual node failure impacts overall resource avail-
ability.

We take a comprehensive approach to profiling, analyz-
ing both micro and macro behavior, and offer a more ro-
bust view of the system than standard log and graph tech-
niques. We profile the system by running avisualization
client on each node. The client is responsible for collect-
ing node-specific instrumentation data and local machine
statistics. Data is forwarded to a cluster ofvisualization
serverswhich use timestamp information to serialize data
from all nodes into a single, cohesive stream of system
events. This serialization enables cause and effect anal-
ysis of distributed performance problems. The ordered
stream is then fed into avisualization applicationwhich
uses computer animation to intuitively animate represent
system activity and behavior in real time.

We have implemented our profiler in the Ceph petas-
cale, distributed file system [25] along with a prototype
visualization application. Our prototype visualizes stor-
age behavior by animating all nodes in the system and
their various system metrics and activities. For example,
we animate CPU utilization as a changing color scale and
charaterize metadata operations via changing pie charts.
Our animation allows users to see all nodes in the sys-
tem and easily understand how those nodes are operat-
ing. By viewing multiple nodes at once, users can easily
understand complex inter-node relationships. For exam-
ple, the effects of mirroring data become obvious because
changes in performance can easily be identified. Evalua-
tions of our profiler indicate a very limited overhead and
scalability in storage systems over 1,000 nodes. Using
our visualization we uncovered several important perfor-
mance issues in Ceph. These issues range from poor load
balancing of metadata operations to a suprisingly strong
correlation between, supposedly decoupled, metadata and
data operations.

The remainder of the paper is organized as follows.
Section 2 discusses related profiling and visualization
work. Section 3 presents the design goals behind our pro-

filing and visualization. We discuss the design and imple-
mentation of our system in Sections 4 and 5. We present
our experiences profiling the Ceph petascale, distributed
file system in Section 6 with a performance analysis in
Section 7. We discuss future work in Section 8 and con-
clude in Section 9.

2 Related Work

Profiling and benchmarking storage systems is a heavily
researched topic, though distributed storage present many
unexplored challenges. Significant inroads have been
made in tracing and profiling local file systems which re-
side on a single machine [2, 5, 13, 16, 28]. Latency anal-
ysis and system instrumentation are common methods of
aggregating data, while performance counters are used to
express node performance. This is insufficient for a dis-
tributed environment, where understanding the inter-node
performance relationships is critical to problem resolu-
tion.

Previous research in profiling general distributed sys-
tems addresses the scenario where applications are black-
box entities whose source code cannot be viewed or
instrumented (often for proprietary reasons) [1, 6, 16].
When high-level graph construction is sufficient for pro-
filing, this approach is quite useful. However, in a dis-
tributed storage system, where capturing internal state is
critical to establishing an accurate view, the necessary in-
strumentation makes a black-box approach inadequate.

Other existing techniques focus on fine-grained profil-
ing and end-to-end request tracing is used in order to iden-
tify bottlenecks [11, 12, 16, 22], model workloads [18,
24], and identify anomolies [20] in a distributed environ-
ment. Systems like Magpie [3] and Pinpoint [7] use sta-
tistical modeling to infer performance outliers. They rely
heavily on trace files, which limits their ability to identify
bugs that are common to all paths in a system. This ap-
proach also assumes that outliers are necessarily the result
of bugs. Other approaches like Pip [21] require that the
users specify their expectation for how a workload should
perform. This can be a complex task, and puts the burden
on the user to have a deep knowledge of the workload.

Another profiling approach uses statistical correlation
to understand which performance thresholds are related to
violations in Service Level Objectives (SLOs) [8, 9]. This
work has similar objectives to our own, in that the goal
is to identify states which relate to performance degrada-
tion. However, this work relies on having a precise defi-
nition of performance violations, which a SLO affords. In
contexts such as scientific computing environments, the
lack of such a definition puts the administrator in the po-

sition of arbitrarily defining service objectives. Insteadit
is more important to know whether a performance degra-
dation is the result some specific inefficiency, or whether
the system as a whole is simply experiencing high utiliza-
tion.

We rely on animation to visualize system data because
it can take raw data and manipulate it so that recogniz-
able patterns begin to emerge, which makes management
of resources and trend analysis easier [15]. This allows
the user to see subtle interactions that can easily be over-
looked by other methods of data exploration. Visualiza-
tion can also be used for prediction and intuitive trou-
bleshooting.

There have been numerous systems which rely on vi-
sualization techniques to analyze systems data. Rivet [4]
is an architecture for flexible and extensible visualization
of generalized distributed systems. Because of their fo-
cus on general distributed systems, Rivet requires addi-
tional data transformation stages to generalize data, which
adds overhead. Visualization is done through showing
pipelines of system events, statistics, and graphs. While
useful for general distributed systems, it is inadequate for
storage systems which require visualization of both time-
coordinated high level system state as well as low-level
information. NetLogger [14] is a methodology for gen-
erating precise performance event logs and visualizing
the aggregate data for performance analysis. It can pro-
file any arbitrary metric chosen by developers, and co-
ordinates log files to a central repository. NetLogger’s
log-and-graph approach to visualization makes root-cause
analysis difficult in a distributed file system, where the
problem source is often removed from where its effect is
felt. Further, the delay associated with creating NetLog-
ger event logs is prohibitively expensive for a distributed
file system, where I/O latencies usually measure in mi-
croseconds.

Several systems use call-graphs to build the path that
requests take through the system, allowing bottlenecks
along the path to be revealed [1, 3, 19, 20, 23, 24]. This
approach has proved useful for identifying inefficient soft-
ware components and slow nodes in a network. Unfortu-
nately, is a call-graph only provides information about a
single path in the system and is unable to build a compre-
hensive view of how many nodes are interacting at once.

Ganglia [17] is a distributed monitoring project that has
a similar approach to visualization as our own. Ganglia is
able to monitor systems using scalable techniques that in-
troduce low processing overhead to each system. We take
a similar approach in how we represent individual system
nodes. One major difference between our work and Gan-
glia is that Ganglia does not afford the user with a method

of correlating metrics on separate machines. If Ganglia
reports that two machines are experiencing high resource
utilization, one must still log into those machines and an-
alyze each independently to figure out why. Answering
questions regarding inter-node relationships is a primary
goal of our work, and to that end our design goals supports
this type of analysis directly.

3 Design Goals

The design of our profiler and visualization was motivated
by several goals:
Low Overhead: In order to achieve accurate perfor-
mance metrics, profiling must introduce minimal over-
head. Therefore, introducing major computations along
critical paths must be avoided.
Scalability: As distributed storage systems grow larger,
scalability becomes a major design focus. With large
systems comes an increases the number of points being
profiled and the amount of data being collected. This
requires that the profiling infrastructure be able to grow
with the size of the storage system and that visualization
techniques continue to present intuitive results even as the
amount of data becomes large.
Portability: The utility of any distributed profiling sys-
tem is bounded by the range of nodes on which it can be
applied. For this reason, portability is a key design crite-
ria. While points of instrumentation will differ between
nodes and file systems, the method for gathering the in-
formation should be completely abstracted from the file
system itself. As a result, simple instrumentation should
be the only modification requirement.
Comprehensive Analysis: Distributed storage systems
have complex relationships with many nodes which af-
fects performance. This complexity is exacerbated as sys-
tem size increases. To be effective, it must be feasible to
quickly and easily understand large amounts of data and
the effect of node interactions. At the same time, under-
standing the performance of each individual node remains
integral. Therefore, any visualization must make both of
these macro and micro metrics intuitive to the user.

4 Methodology

To achieve our design goals, we take a distributed ap-
proach to profiling. Each node in the file system runs a
local visualization client, which is responsible for profil-
ing local storage system and machine information. Peri-
odically, each visualization client updates avisualization
serverwith recent changes to the local node. The server is

responsible for chronologically ordering the data to pro-
duce a single, serialized stream of system events from all
nodes and sending this serialized sequence to avisualiza-
tion application. The visualization application visually
represents nodes in the system and displays or animates
their metrics and behavior. This provides an intuitive in-
terface where both node-specific and complex inter-node
behavior are easily understood. We discuss this process in
detail throughout this section.

4.1 Visualization Client

The visualization client is implemented as a user-space
process which collects instrumentation data and machine
statistics. This design provides two key benefits. First, the
client does not add overhead to critical paths because it
relies only on instrumentation data and can reside outside
of the storage system. This improves development time
and ensures that the client does not interfere with system
performance. Second, by only requiring instrumentation
data, the client can profile any instrumented part of the
storage system. This greatly improves portability and al-
lows profiling of components in user and kernel space.
For example, profiling a kernel-level file system only re-
quires that the file system log data to a shared file which
the visualization client can read. This is illustrated in Fig-
ure 1, where we see that the visualization client can profile
user level file systems without interrupting calls to VFS.
Additionally, the client can profile a kernel-level file sys-
tem, such as NFS, by simply requiring that NFS log in-
strumentation data to a source accessible to the client. The
benefits we have discussed indicate that how and where
the system is instrumented is critical to the robustness of
the profile. Therefore, regardless of where the storage sys-
tem resides, building a robust profile is dependent on ac-
curate system instrumentation.

We have implemented the visualization client as a Java
RMI client. The client profiles the local node by using
two methods of data collection. The first method is con-
cerned with metrics which are common to all nodes in
the storage system, such as system load and network uti-
lization. This node-agnostic method is performed by a
thread which periodically polls local OS resources like
/proc/loadavg. The second method is node-specific,
and depends on the role that the node plays in the stor-
age system (e.g., client or server). These events are cap-
tured from instrumented code in the storage system itself.
The visualization client stores collected metrics in a local
database. Periodically, a separate communication thread
polls this database to aggregate events that occured during
the previous poll interval. This aggregation is then time

User �levelKernel �level
V i s u a l i z a t i o nC l i e n t C e p h F SV F S

I n s t r u m e n t a t i o nD a t a r e a d ()s y s _ r e a d ()N F S n f s _ r e a d ()I n s t r u m e n t a t i o nD a t a N I C d r i v e r
Figure 1: The visualization client allows profiling user
and kernel-level file systems.I n c o m i n gM e s s a g e B u f f e rE v e n t s E v e n tB u f f e r S e r i a l i z eE v e n t s A p p l yF i l t e r P a s s t oA p p l i c a t i o n21

n3
Figure 2: A high-level pipeline of visualization server op-
erations.

stamped and sent to the visualization server over RMI.
The communication period is kept short to ensure that in-
formation sent to the visualization server is fresh.

4.2 Visualization Server

In order to achieve a complete view of the system, metrics
from all nodes must be aggregated to a common location.
A cluster of visualization servers is responsible for receiv-
ing and organizing data from all nodes in the system and
for passing a serialized ordering of system events to the
visualization application. Event ordering is achieved by
comparing the time stamps of events received from all vi-
sualization clients. We assume that each node in the sys-
tem is roughly synchronized.

The key benefit of centralizing metrics at the visual-
ization servers is that it allows visualization clients to act
independently of each other, requiring the client’s respon-
sibility to simply be collecting and forwarding metrics to
the server. Requiring the visualization clients to coordi-
nate in order to serialize events would introduce major
complexities and add overhead from to the extra commu-
nication.

System metrics are organized into a cohesive, time-
ordered series by the visualization servers based on times-
tamps. The reason for this is two-fold. First, events in a
distributed storage system have many cause-and-effect re-
lationships. For example, a write at a storage device can
be the result of numerous metadata operations causing a
metadata server to flush its journal. As such, understand-
ing these events is directly dependent on understanding
their ordering. Second, serializing data at the visualiza-
tion server allows the design of the visualization applica-
tion to be simplified. For example, the visualization ap-
plication is designed using an event-driven model where
it simply displays events are they are received.

A consequence of ordering events at the visualization
server is that events can be received out-of-order. If this
issue were not addressed, events would be passed to the
visualization application in the wrong order. We address
this by batching events at the server before sending them
to the visualization application. By batching for a short
period (less than a second) the server can receive and or-
der a number of events, ensuring that all events received
within the buffer window are passed to the visualization
client in the correct order. Long buffer windows cause a
large number of events to be correctly ordered, but also
imply that the visualization application will receive up-
dates less frequently. The merits of this tradeoff varies
between systems, depending on how important event or-
dering is.

The main difficulty with clustering is that each server
cannot create a complete ordering of events for a buffer
window because visualization clients may communicate
with any server. To address this, servers communicate
all information for a specific time interval to a specific
server who is the authority for that interval. For example,
all servers may forward data that is timestamped between
logical time1500.0 and1600.0 to a specific server
where all events for that period can be correctly ordered.
Authority for a time interval may be calculated via simple
hash, mapping intervals to servers.

Another important scalability issue is the amount of
data that is forwarded to the visualization server. If clients
collect a large amount of data from each node, a sys-
tem with a large number of nodes will overwhelm even
a reasonably sized visualization server cluster. To alle-
viate this, the visualization server limits the amount of
data sent by each client. The server only requires that
clients forward data values of interest, which correspond
to specifications from the visualization application. For
example, when the visualization application is only an-
alyzing storage device performance, the amount of data
collected about storage system clients can be reduced. We

are exploring further extensions to this which is discussed
in Section 8.

We have implemented the visualization server as a Java
RMI server. Figure 2 demonstrates a high-level view of
the stages in the server pipeline. Before passing events
to the visualization application the server applies a filter.
The filter serves to limit the amount of data passed to the
application. For example, if the user has chosen to focus
the visualization application on a subset of system nodes,
the server only needs to pass data for those nodes being
displayed.

4.3 Visualization Application

The effectiveness of any performance debugging solu-
tion depends on its ability to easily and intuitively con-
vey information to the user. There have been many ap-
proaches towards visualizing activity in distributed sys-
tems and several have been discussed in Section 2. While
some of these solutions are not suitable for large-scale
file systems, others may prove effective. In any case, the
suitability of any visualization is determined by the user’s
goals. We have chosen to focus on a visualization method
that easily presents both micro (node-specific) and macro
(inter-node) metrics. As a result, we have chosen to use
simple computer animation to visually represent the entire
file system and animate system behaviors.

We have implemented an initial visualization prototype
in C++ using the OpenGL 1.5 library. While our proto-
type is rudimentary, it serves as a proof-of-concept refer-
ence. The visualization application may or may not reside
on the same node as the visualization server. As such, the
server may stream metrics to the visualization application
via IPC, sockets or a shared file. Nodes are animated by
glyphs corresponding to the role of the node in the sys-
tem (e.g., client or file server). All collected metrics and
measurements correspond to animations which are dis-
played relative to their node glyph. For example, a file
server’s I/O characterization may be shown as a dynami-
cally changing histogram adjacent to the glyph. Alterna-
tively, a node’s system load may be animated by changing
the color of the node’s glyph. Users can view any subset
of nodes or metrics in order to improve comprehension
of large-scale systems. We discuss further details of our
implementation in Section 5.

Visualizing each node in the system and animating
node metrics and behavior provides several features that
make it a reasonable approach for distributed storage sys-
tems. First, animations are easy to understand. At a
glance, users can understand changing colors or shapes far
more intuitively than logs or static graphs. Second, users

C l i e n t
M D SO S D

o p e n ()i n o d er e a d () d a t a
Figure 3: Parallel file system architecture and data flow.

can validate inter-node relationships. For example, if file
I/O causes a node to become heavily loaded, one can iden-
tify that file’s mirror because it will also be heavily loaded.
Third, users can narrow their view to focus on the perfor-
mance of a single node or set of nodes. This supports arbi-
trarily tailoring analysis as the user sees fit. Fourth, view-
ing multiple nodes allows users to validate observations.
For example, analysis of high I/O latency can determine
whether the issue is occurring on more than one node,
whether the latency is comparable on all nodes involved,
whether load is comparable on all nodes, and whether the
high latency persists over time. Fifth, visualization can be
done in real-time or offline. By profiling and viewing the
system as a workload runs in real-time, users can monitor
performance and identify problems early. By recording
log data and replaying it, users can diagnosis previously
observed performance issues. Our analysis and results in
Section 6 support these beliefs.

5 Implementation Details

We have implemented our performance debugging sys-
tem in the Ceph petascale, distributed file system [25].
We chose Ceph because it is large-scale (designed for
petabytes of data and tens of thousands of nodes), sup-
ports high performance computing workloads, has several
unique design features, and is currently in prototype sta-
tus. This means problems are likely abundant and analysis
is helpful to current designers.

Ceph is designed as an object-based, parallel file sys-
tem. These systems generally consist of three main com-
ponents: the client, a metadata server cluster (MDS), and
a cluster of object storage devices (OSD). These systems
achieve scalability and performance by separating the
control and data paths. Clients communicate all names-
pace operations, such asopen() andstat(), to the

Node Type Metric Animation
MDS System Load Color Map

Operation Breakdown Pie Chart
Client Network Traffic Arrows in/out
OSD System Load Color Map

Network Traffic Arrows in/out
Disk Utilization Percentage

I/O Size Breakdown Histogram
Write latencies Values

Table 1: The metrics collected by the visualization client
and their corresponding representation in the visualization
application. Our analysis has emphasis on OSD and I/O
performance.

MDS and all file I/O operations, such asread() and
write(), to the storage devices. Large-scale systems
may contain tens of thousands of clients and storage de-
vices and hundreds of metadata servers. Figure 3 shows
the parallel file system architecture and data flow.

Our system is particularly well suited for profiling par-
allel file systems because they present several unique fea-
tures. First, file data is highly distributed, commonly
striped across many storage devices. This means profiling
any single device is insufficient. Second, the control path
is decoupled from the data path. As a result, MDS pro-
filing techniques are inherently different from storage de-
vice profiling techniques. Third, location of data and load-
balancing play major roles in how a system performs and
scales. This implies the importance of replication policies,
failure handling, and other reliability techniques. These
factors motivate the need for a macro view of the entire
file system and the need for cause and effect relationships
to be correlated in time.

Ceph is designed around several novel concepts which
make it an excellent system to evaluate. Ceph uti-
lizes a pseudo-random data placement function, called
CRUSH [26], which scales better than traditional alloca-
tion tables. The separation between metadata and data is
maximized by pushing responsibilities, such as object se-
rialization, to intelligent OSDs. Finally, load-balancing at
the MDS is handled by dynamically assigning responsi-
bility for namespace sub-trees [27]. All of these concepts
are quite new and therefore their implications have yet to
be fully understood, meaning Ceph provides an excellent
profiling test subject.

Our visualization client collects different metrics de-
pending on the type of node it is profiling (i.e., client,
MDS, OSD). In addition, a visualization client runs on
each node in Ceph’s Monitor cluster, which is responsible
for managing the MDS and OSD clusters and for boot-
strapping clients. The Monitor is used to learn of nodes

Figure 4: A labeled screenshot of the visualization application.

entering or leaving the system or changing state (i.e., not
responding but not confirmed failed). These events are
sent to the visualization server as architectural updates.
The visualization client collects several simple, but useful,
metrics from other nodes in the system, with an emphasis
on OSD performance. These metrics are enumerated in
Table 1.

In our visualization application users are able to tog-
gle the metrics being displayed and which nodes are in
focus. Figure 41 shows a screenshot of the visualization
aaplication with numeric labels and descriptions added.
Clients are represented on top, with MDSs following, and
OSDs on the bottom. Table 1 also details the animation
used to present each metric. Network traffic, labeled 2, is
shown as triangles pointing in and out, which grow and
shrink as traffic varies. System load average, labeled 3,
changes from blue to red, indicating low and high load
respectively, as the load changes. Each MDS has a pie
chart, labeled 1, showing a breakdown of the number of
open() (blue),readdir() (red), andstat() (green)
operations received. Each OSD shows a breakdown of I/O
by type and size, labeled 6, with a kilobyte acting as the
cutoff between large and small I/O. Below the I/O break-
down, labeled 5, is the moving average of large and small
write latencies, respectively. Disk utilization, labeled4,

1All screenshots have a corresponding gray-scale version that can be
included.

is shown above each OSD as the total percentage of free
space used. The menu on the right of Figure 4 allows
users to toggle the nodes and metrics in view.

6 Profiling and Visualizing the Ceph
Petascale, Distributed File System

We conducted a study on Ceph to evaluate the ability of
our profiling and visualization techniques to aid in debug-
ging performance. Our experiments focus on the visu-
alization application’s ability to reveal inter-node perfor-
mance problems. For each performance issue revealed,
we validate our observation through additional experi-
ments. Each study was conducted on a 25 node clus-
ter where each node was a PC with four 64-bit 2GHz
Dual-Core CPUs, 8GB of RAM, 4 SCSI hard disks, con-
nected through a 10 Gigabit Extreme Switch and run-
ning RHEL 4 with kernel version 2.6.9. All experiments
were conducted with the Ceph client cache disabled as
the write back policy resulted in high variability between
runs. Each experiment used 4 OSDs while the number of
MDSs and clients varied between experiments. A single
visualization server was run on a seperate node with the
visualization application also residing on that node. To
save page space, the figures in our analysis only include
the key portions of our visualization.

(a) Write latency for 80 clients
writing a shared file using
small write sizes.

(b) Write latencies for 80
clients writing a shared
file using small write sizes
and 32 clients writing
non-shared files using large
write sizes.

Figure 5: OSD profiles for workloads with varying I/O
sizes. Small write latencies significantly increase when
another workload is introduced.

6.1 Small Write Latency

We ran an experiment to analyze the impact writes of
varying sizes play in the storage system. We ran an exper-
iment with 80 clients writing a shared file on a single OSD
using a small write size just under a kilobyte. The profile
of this single OSD is depicted in Figure 5(a) and shows av-
erage small write latencies on the order of 80µs. We then
introduced another 32 clients, each of whom wrote non-
shared files in large 1MB chunks. The profile of the same
OSD is shown in Figure 5(b). Introducing the large write
workload served to dramatically increase the latency of
small writes, far beyond expectations. Small write latency
increased on the order of 60% and greatly increased load
on the OSD. While introducing an additional 32 clients
should add overhead, it is not expected to be so severe,
particularly because Ceph’s data placement algorithm is
designed to distribute I/O evenly. We conducted a sepa-
rate experiment to validate our observations. We ran the
same workloads, introducing the 32 clients issuing large
writes 65 seconds into to the experiment, and plotted the
latencies for small writes in Figure 6. We see a significant
spike in latency for small writes at time 65 when large
writes begin. This indicates what is most likely an im-
plementation inefficiency in Ceph’s OSD code. This also
serves as a simple example of how allows easy problem
identification.

6.2 Metadata and I/O Separation

Our second profile explores a more complex example of
inter-node performance problems. The profile consisted
of examining the effects various workload types have on
performance. We began by running a workload consisting
only of metadata operations where 50 clients each cre-

Time (s)

17 37 57 77 97 117 137 157 177 197

W
rit

e
La

te
nc

y
(m

ic
ro

se
co

nd
s)

0

1000

2000

3000

4000

5000

Figure 6: The latency for small writes on an OSD. La-
tency significantly spikes at 65 seconds when large I/Os
are introduced. This is denoted with a dotted line.

ated a large tree of directories and files, and then walked
and read the entire tree. We observed a large number of
small writes being written to the OSDs, depicted in Fig-
ure 7(a). Upon further investigation we discovered the
MDS’s metadata journal was being synchronously flushed
to the OSDs on every metadata operation to ensure the
logs reliability. Then we introduced a second workload
where 20 clients ran I/O heavy operations, in which each
client wrote a gigabyte to a unique file. The only meta-
data operations issued were to open and close the files.
Our visualization of the OSDs under both workloads in
Figure 7(b) shows a much higher load on each OSD, and
again the latency for small write operations (the journal
flushes) significantly increased, which we witnessed in
the previous experiment. To validate our observation and
analyze the impact of the high latency journal flushes,
we compared the time required to run the metadata only
workload with and without the additional 20 clients per-
forming I/O. Our results are shown in Figure 8. The meta-
data workload is over 60% slower when there are addi-
tional clients performing I/O. This overhead is due to the
added latency of journal flushes slowing the performance
of metadata operations. This is suprising because it con-
flicts with the general intuition that metadata and data
operations are decoupled in parallel file systems. This
dependency can be eliminated by bypassing the MDS’s
need to store the journal on the OSDs, perhaps via reli-
able NVRam or a separate journal store. This experiment
demonstrates how a comprehensive view of the entire sys-
tem allows problems with seemingly remote causes to be
identified.

(a) OSD activity with a metadata-only workload running.

(b) OSD activity running a metadata workload and a I/O workload which issues large writes.

Figure 7: OSD profiles under a metadata only and a metadata andI/O workload. The increased load and latency
indicate the I/O workload is interfering with the metadata workload.

Client ID

0 10 20 30 40 50

W
or

kl
oa

d
R

un
tim

e
(s

)

0

20

40

60

80

100

120

140

160

180

200

220
Metadata Workload + Other Clients I/O Workload

Metadata Workload

Figure 8: The average time for 50 clients to run a metadata
exclusive workload with and without 20 additional clients
performing an I/O exclusive workload.

Figure 9: Load distribution across three metadata servers
during a flash crowd workload. One MDS signifigantly
more load than the others.

6.3 MDS Load Balancing

Ceph employs an advanced metadata load balancing
scheme called Dynamic Subtree Partitioning [27]. DSP

allows a MDS node to dynamically share responsibility
for a hot or popular portion of the namespace with an-
other, less loaded, MDS node. We tested Ceph’s imple-
menation of this strategy using a flash crowd and 3 MDS
nodes. The flash crowd consisted of over 11,000 total
open requests from 2,000 clients. Figure 9 shows the
MDS load distribution as depicted by our visualization.
The pie chart next to the first two MDSs indicate each
node only received open requests, while the third MDS
has not received any requests. We immediately see one
MDS is far more loaded than the other two. We investigate
further by measuring the number of requests received by
each OSD, shown in Figure 10. The distribution of load
is very uneven, with one MDS handling over 90% of the
requests and the third handling none at all. This indicates
implementation inefficiencies with the load balancing pol-
icy, such as infrequent exchanges of load metrics between
MDS nodes or slow migration of the namespace to other
MDS nodes.

6.4 Replication Policy Impact

We conducted a final experiment which analyzed the role
replication plays in storage performance. We first ran a
workload with 50 clients writing non-shared files using a
large write size just over a kilobyte. This was run twice,
once with a single replica and once with three replicas.
Ceph mirrors each replica onto separate OSDs, though
our visualization does not directly show replication. This
is because replication passes through a seperate interface
which was not encapsulated by our intrumentation. The

(a) Fifty clients with one replica.

(b) Fifty clients with three replicas.

(c) A single client with one replica.

(d) A single client with three replicas.

Figure 11: OSD profiles with different replication strategies. The added write latency to do three replicas is far larger
with 50 clients than with 1.

replication is however noticable via analysis of the net-
work interface. Each OSD receiving lots of data, without
high write traffic, is acting as a mirror. The OSD pro-
files with different replication strategies are shown in Fig-
ures 11(a) and 11(b). We see the latency for both write
sizes significantly increases, on the order of 60%, with
three replicas versus one. While an overhead is expected,
we explore further and re-run each experiment with only a
single client. Our visualization is shown in Figures 11(c)
and 11(d) with OSD 3 being written to in both cases. With
a single client latency still increases, though the discrep-
ancy between the two is far smaller. Average latencies are

provided in Table 2. With a single client three-way repli-
cation adds a 37% overhead, while with 50 client, three-
way replication adds a 59% overhead. If replication only
added a cost to apply updates remotely we would expect
the latency differences to be closer than those observed.
Unfortunately this is not the case, as in addition to the cost
of applying the replica, each node pays a cost for acting
as the mirror for another nodes data. This adds additional
overhead which can easily go overlooked with other vi-
sualization strategies. Our approach allows the increased
latency and network traffic (due to replication) to easily

MDS Number
1 2 3

N
um

be
r

of
 o

pe
n(

)
C

al
ls

 S
er

vi
ce

d

0

2000

4000

6000

8000

10000

Figure 10: The number of open requests handled by each
MDS during a flash crowd workload.

Clients # Replicas write() latency
1 1 71.82
1 3 98.52
50 1 134.27
50 3 215.29

Table 2: The average write latency (in microseconds) for
different replication policies. Adding more repliacs be-
comes signifigantly more expensive with more clients.

be seen together, which opens the door for more complex
problems to be revealed.

7 Performance Evaluation

We evaluated the overhead and scalability of our profiler
in Ceph in several experiments. Experiments were con-
ducted using the same 25 node cluster, though 12 OSD
were used instead of 4. Our results indicate that our ba-
sic prototype profiler is able to scale to reasonably large
systems (> 1000 nodes) even with only a single visual-
ization server. Also, our results show that requiring only
instrumentation code incurs a very minimal overhead.

In our first experiment we measured the latency for
RMI function calls which push collected metrics from the
visualization client to the visualization server. We varied
the number of Ceph clients (and thus visualization clients)
and Figure 12 shows the results and standard deviation of
each run with outliers removed. Even with a system size
greater than 1,000 nodes RMI call latency is modest. The

Number of Ceph Clients

1 50 10
0

25
0

50
0

75
0

10
00

A
ve

ra
ge

 R
M

I C
al

l L
at

en
cy

 (
m

s)

0

20

40

60

80

100

Figure 12: Average latency for RMI function calls to
push collected metrics from the visualization client to the
server as the number of Ceph clients increases.

average call latency with 1,000 nodes is only three times
that of latency with one node. This indicates that even in
very large systems the cluster of visualization servers may
be kept small.

The second experiment analyzes the number of mes-
sages received by the visualization server as the number of
nodes in the system increases. Figure 13 shows the total
number of messages received by the visualization server
once all clients have finished writing 500MBs using 1MB
size writes. The number of messages quickly increases as
the number of nodes increases to over 1,000. Though the
aggregate number is high, there are roughly less than 130
messages received from each node. The major factor that
contributes to the increase in total message is the length
of the workload, as more messages will be sent for longer
running workloads and adding clients increases the length
of the workload.

Our final experiment looks at the performance overhead
added by our profiler. We ran three workloads, each with
and without our profiling infrastructure present and mea-
sured the total time for each workload to run. We used
three workloads, a heavy-metadata only workload, a light-
I/O and light-metadata workload, and a heavy-I/O only
workload. Table 3 shows our results. We see that the
visualization client profiling each node adds a near neg-
ligible overhead to each workload. This comes directly
from requiring only instrumentation code to be added to
the storage system, eliminating any expensive bottlenecks
on critical paths.

8 Future Work

The opportunity exists in a number of areas for future
work. As scalability is a necessity when performing on-
line analysis of distributed systems, the volume and gran-
ularity of metrics sent to the visualization server must cor-

Number of Ceph Clients

N
um

be
r

of
 R

M
I C

al
ls

0

20000

40000

60000

80000

100000

0 100 200 300 400 500 600 700 800 900 1000

Figure 13: The total number of RMI calls received by
the visualization server as the number of Ceph clients in-
creases. The total number of calls accounts for the time
required for each client to write a 500MB file.

Workload W/o Client W/ Client
Metadata 165 167

I/O w/ metadata 157 158
I/O 146 146

Table 3: The total time (in seconds) required to run three
different workloads with and without the visualization
client profiling the system. Profiling adds a near negli-
gible overhead since only instrumentation data is added
to the storage system.

respond to the level of view abstraction chosen by the user.
There are a number of improvements we can make to our
feedback-loop approach to aggregating data. One possible
area is the granularity of data that the visualization server
aggregates. For example, if the user zooms the view into
a small region, the granularity of data sent from that re-
gion should become more fine-grained. This would com-
plement our current approach of only sending data from
nodes which currently appear in the view.

Another area of potential research is the integration of
automated performance anomaly detection using statisti-
cal analysis. This approach may compliment our com-
prehensive view of system analysis by notifying the vi-
sualization application when performance outliers are de-
tected in the system. Such notifications will make the user
aware of issues outside of the current view.

Finally, further advances to the visualization applica-
tion will support additional metrics relevant to debug-

ging distributed file systems. Our current prototype has
more OSD-specific metrics than any other device. Fu-
ture enhancements are needed MDS performance metrics,
specifically in the areas of journal operations and load bal-
ancing. Also, metrics describing activity in each Ceph
client’s local cache is needed to understand how client
cache performance effects workload throughput.

9 Conclusions

We presented a new approach to distributed storage sys-
tem profiling that focuses on offering an intuitive view
of system performance in a scalable fashion. We suc-
cessfully identified a number of performance issues in the
Ceph peta-scale file system, including those which result
from inter-node relationships. We also identified perfor-
mance degradation that resulted from seemingly unrelated
system activities. The ability of our system to identify
these issues shows promise for our prototype visualiza-
tion application.

The low-overhead associated with our profiling tech-
nique supports the idea that both low and high-level per-
formance metrics can be collected without reducing per-
formance. Our performance analysis has also shown that
the communication overhead associated with aggregating
performance metrics does not increase significantly as the
number of clients increases.

In conclusion, we believe our work has motivated and
demonstrated a need to achieve a comprehensive view of
the storage system if complex performance debugging is
to be achieved. We’ve asserted our position that as stor-
age become larger and more complex, a more extensive
understanding of the system as a whole is required. We
hope our work serves motivates others toward this goal.

References

[1] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds,
and A. Muthitacharoen. Performance debugging for dis-
tributed systems of black boxes. InSOSP ’03: Proceed-
ings of the nineteenth ACM symposium on Operating sys-
tems principles, New York, NY, USA, October 2003.

[2] A. Aranya, C. P. Wright, and E. Zadok. Tracefs: A
File System to Trace Them All. InProceedings of the
Third USENIX Conference on File and Storage Technolo-
gies (FAST 2004), pages 129–143, San Francisco, CA,
March/April 2004. USENIX Association.

[3] P. T. Barham, A. Donnelly, R. Isaacs, and R. Mortier. Us-
ing magpie for request extraction and workload modelling.
In Proceedings of the 6th Symposium on Operating Sys-
tems Design and Implementation (OSDI), San Francisco,
CA, Dec. 2004.

[4] R. Bosch, C. Stolte, D. Tang, J. Gerth, M. Rosenblum, and
P. Hanrahan. Rivet: a flexible environment for computer
systems visualization. InSIGGRAPH Computer Graphics
2000, volume 34. ACM, 2000.

[5] R. Bryant, R. Forester, and J. Hawkes. Filesystem per-
formance and scalability in linux 2.4.17. InProceedings
of the FREENIX Track: 2002 USENIX Annual Technical
Conference, Berkeley, CA, USA, June 2002.

[6] M. Chen, A. Accardi, E. Kcman, J. Lloyd, D. Patterson,
A.Fox, and E. Brewer. Path-based failure and evolution
management. InProceedings of the First Symposium on
Networked Systems Design and Implementation (NSDI),
San Francisco, CA, 2004.

[7] M. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer.
Pinpoint: Problem determination in large, dynamic, inter-
net services. InProceedings of the International Confer-
ence on Dependable Systems and Networks, 2002.

[8] I. Cohen, J. S. Chase, M. Goldszmidt, T. Kelly, and
J. Symons. Correlating instrumentation data to system
states: A building block for automated diagnosis and con-
trol. In Proceedings of the 6th Symposium on Operating
Systems Design and Implementation (OSDI), San Fran-
cisco, CA, Dec. 2004.

[9] I. Cohen, S. Zhang, M. Goldszmidt, J. Symons, T. Kelly,
and A. Fox. Capturing, indexing, clustering, and retrieving
system history. InSOSP ’05: Proceedings of the twentieth
ACM symposium on Operating systems principles, pages
105–118, New York, NY, USA, 2005. ACM Press.

[10] D. Ellard and M. Seltzer. New nfs tracing tools and tech-
niques for system analysis. InLISA 03: Proceedings of
the 17th Annual USENIX Conference on Large Installa-
tion Systems Administration. USENIX Association, 2003.

[11] R. Fonseca, G. Porter, R. H. Katz, S. Shenker, and I. Sto-
ica. X-trace: A pervasive network tracing framework. In
NSDI ’07: Proceedings of the 4th USENIX Symposium on
Networked Systems Design and Implementation. USENIX
Association, 2007.

[12] D. Geels, G. Altekar, P. Maniatis, T. Roscoe, and I. Stoica.
Friday: Global comprehension for distributed replay. In
NSDI ’07: Proceedings of the 4th USENIX Symposium on
Networked Systems Design and Implementation. USENIX
Association, 2007.

[13] S. Graham, P. Kessler, and M. McKusick. Gprof: A call
graph execution profiler.Proceeedings of the SIGPLAN
’82 Symposium on Compiler Construction, June 1982.

[14] D. Gunter, B. Tierney, B. Crowley, M. Holding, and J. Lee.
Netlogger: A toolkit for distributed system performance
analysis. InMASCOTS ’00: Proceedings of the 8th In-
ternational Symposium on Modeling, Analysis and Simu-
lation of Computer and Telecommunication Systems, page
267, Washington, DC, USA, 2000. IEEE Computer Soci-
ety.

[15] D. Hughes. Using visualization in system and network
administration. InLISA ’96: Proceedings of the 10th
USENIX conference on System administration, pages 59–
66, Berkeley, CA, USA, 1996. USENIX Association.

[16] N. Joukov, A. Traeger, R. Iyer, C. P. Wright, and E. Zadok.
Operating system profiling via latency analysis. InPro-
ceedings of the 7th Symposium on Operating Systems De-
sign and Implementation (OSDI), Seattle, WA, Nov. 2006.

[17] M. L. Massie, B. N. Chun, and D. E. Culler. The gan-
glia distributed monitoring system: design, implementa-
tion, and experience.Parallel Computing, 30(5-6):817–
840, 2004.

[18] M. P. Mesnier, M. Wachs, R. R. Sambasivan, A. X. Zheng,
and G. R. Ganger. Modeling the relative fitness of storage.
SIGMETRICS Perform. Eval. Rev., 2007.

[19] B. P. Miller, M. D. Callaghan, J. M. Cargille, J. K.
Hollingsworth, R. B. Irvin, K. L. Karavanic, K. Kun-
chithapadam, and T. Newhall. The paradyn parallel perfor-
mance measurement tool.Computer, 28(11):37–46, 1995.

[20] A. V. Mirgorodskiy, N. Maruyama, and B. P. Miller. Scal-
able systems software—problem diagnosis in large-scale
computing environments. InSC ’06: Proceedings of the
2006 ACM/IEEE conference on Supercomputing, page 88,
New York, NY, USA, 2006. ACM Press.

[21] P. Reynolds, C. Killian, J. L. Wiener, J. C. Mogul, M. A.
Shah, and A. Vahdat. Pip: Detecting the unexpected in
distributed systems. InIn Proceedings of the Third Sym-
posium on Networked Systems Design and Implementation
(NSDI), San Jose, CA, 2006.

[22] K. Shen, M. Zhong, and C. Li. I/o system performance de-
bugging using model-driven anomally detection. InFAST
’05: Proceedings of the 4th USENIX Conference on File
and Storage Technologies. USENIX Association, 2005.

[23] S. S. Shende and A. D. Malony. The tau parallel perfor-
mance system.Int. J. High Perform. Comput. Appl., 20(2),
2006.

[24] E. Thereska, B. Salmon, J. Strunk, M. Wachs, M. Abd-
El-Malek, J. Lopez, and G. R. Ganger. Stardust: tracking
activity in a distributed storage system.SIGMETRICS Per-
form. Eval. Rev., 34(1), 2006.

[25] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long,
and C. Maltzahn. Ceph: A scalable, high-performance
distributed file system. InProceedings of the 7th Sym-
posium on Operating Systems Design and Implementation
(OSDI), Seattle, WA, Nov. 2006.

[26] S. A. Weil, S. A. Brandt, E. L. Miller, and C. Maltzahn.
CRUSH: Controlled, scalable, decentralized placement of
replicated data. InProceedings of the 2006 ACM/IEEE
Conference on Supercomputing (SC ’06), Tampa, FL, Nov.
2006. ACM.

[27] S. A. Weil, K. T. Pollack, S. A. Brandt, and E. L. Miller.
Dynamic metadata management for petabyte-scale file
systems. InProceedings of the 2004 ACM/IEEE Confer-
ence on Supercomputing (SC ’04), Pittsburgh, PA, Nov.
2004. ACM.

[28] S. Zhou, H. D. Costa, and A. J. Smith. A file sys-
tem tracing package for berkeley unix. Technical Report
UCB/CSD-85-235, EECS Department, University of Cal-
ifornia, Berkeley, 1985.

	ssrctrcover-07-05
	ssrctr-07-05

