
Efficient Dynamic Voting Algorithms

Jehan-Franwis Piiris

Computer Systems Research Group
Department of Computer Science and Engineering

University of California, San Diego
La Jolla, California 92093

Darrell D. E. Long

ABSTRACT

Voting protocols guarantee consistency of replicated data
in the presence of any scenario involving non-Byzantine
site failures and network partitions. While Static Majorify
Consensus Voting algorithms use static quorums, Dynamic
Voting algorithms dynamically adjust quorums to changes
in the status of the network of sites holding the copies.

We propose in this paper two novel dynamic voting
algorithms. One, called Optimistic Dynamic Voting,
operates on possibly out-of-date information, which greatly
increases the efficiency of the algorithm and simplifies its
implementation. The other, called Topobgical Dynamic
Voting, explicitly takes into account the topology of the net-
work on which the copies reside to increase the availability
of the replicated data.

We also compare availabilities of replicated data
managed by both algorithms with those of data managed
by existing voting protocols using a simulation model with
realistic parameters. Optimistic Dynamic Voting is found to
perform as well as the best existing voting algorithms while
Topological Dynamic Voting performs much better than all
other voting algorithms when two or more copies reside in
the same non-partitionable group.
Keywords: file consistency, fault-tolerant systems, repli-
cated files, majority consensus voting.

1. INTRODUCTION
Distributed systems that maintain multiple copies of some
data objects need a mechanism to ensure the consistency
of the objects in the presence of hardware and software
malfunctions. Although many consistency algorithms for
replicated files have been introduced in recent years, very
few studies have been dedicated to the performance of
these algorithms, either in terms of incurred message over-
head or in terms of the availability and reliability of the repli-
cated files managed by such algorithms. As a result, inves-
tigations in the area of consistency algorithms have often
been focused on relatively inefficient algorithms such as
Majority-Consensus Voting (MCV) [Elli77, Giff79, Elli83,
Garc841. More efficient algorithms such as Available Copy
[BeGoW, LoPaEq and Dynamic Voting [DaBu85, BGS86,
Jajo87, PaBu861 have received considerably less attention.

This work was supported in part by a grant from the NCR Corporation
and the University of Califomiarucm program.

Dynamic voting algorithms are especially interesting
because they provide high reliability and availability while
handling network partitions correctly. They do have some
limitations, however. Their implementation is complicated
by the requirement of instantaneous state information,
which is costly in terms of network traffic. They also require
a minimum of three copies to be of any practical interest.

Section 2 of this paper introduces optimistic dynamic
voting. Section 3 explains how to improve file availability
by explicitly taking into account the topology of the network.
Section 4 analyzes the performance of both protocols using
a discrete event simulation model with realistic parameters.
Finally, section 5 has our conclusions.

2. DYNAMIC VOTING
The weakness of majority consensus voting and of all other
static voting protocols is that the quorum is fixed-it can not
change once the system has begun operation. Because of
this, a few failures can render the data inaccessible.
Dynamic Voting [DaBu85] is a consistency and recovery
control algorithm for replicated objects tailored to environ-
ments susceptible to site failures and network partitions.
This policy adjusts the necessary quorum of physical
copies required for an access operation without manual
intervention. A group of physical copies, comprised of a
majority of the current physical copies that can communi-
cate among themselves, is referred to as the majody block.

Dynamic voting is based on the concept of the con-
nection vector. The connection vector instantaneously
records the state of the network with respect to all sites.
Each physical copy of a replicated data object has an asso-
ciated ensemble of state information consisting of the ver-
sion number and the partition vector. The version number
of a physical copy represents the number of successful
write operations to the file that are known to the physical
copy. The partition vector at a site records the version
numbers of all sites as they were most recently received by
that site.

In its original form dynamic voting allows accesses to
proceed so long as a strict majority of the current physical
copies are accessible. In situations where the number of
current physical copies within a group of mutually commun-
icating sites is equal to the number of current copies not in
communication, dynamic voting cannot proceed and
declares the replicated file to be inaccessible.

A simple extension proposed by Jajodia [JajoSq,
known as Leximgrzphic Dynamic Voting, resolves these
ties by applying a total ordering to the sites.

268 CH2550-2/88/0000/0268$01 .OO @ 1988 IEEE

The sites holding copies of the data are given a static
linear ordering. Then, when a tie occurs, if the group of
communicating sites contains exactly one-half the current
physical copies and that group contains the maximum ele-
ment among the group of current physical copies, that
group is declared to be the majority black.

Our experiments [BMP87] have shown that the con-
nection vector is a diffiiult object to implement. Attempts to
approximate it can consume nearly all of the available
machine cycles on a moderate sized site. Since Dynamic
Voting provides very high availability, but was not practical
in its original form, alternative methods for implementing it
were sought.

2.1. Our Method
A replicated file will consist of a set of physical copies resid-
ing on distinct sites of a local area network. These sites can
fail and the messages they exchange can be lost. It will be
assumed that sites not operating correctly will immediately
stop operations and that all messages delivered to their
destinations will be delivered without alterations in the order
they were sent. Byzantine failures are expressly excluded.

A physical copy will be said to be current if it has
received all wriie requests to the replicated object. A group
of physical copies, comprised of a majority of the current
physical copies that can communicate among themselves,
will be referred to as a majoritypartitbn.

Every physical copy of a replicated file will maintain
some state information. This information will include a
operation number, a version number and a partition set.
The operation number o, is a positive integer that is incre-
mented at every successful operation completed by that
copy. The versbn number vi is a positive integer that
identifies the last successful write operation on that copy.
The partition set represents the set of physical copies that
participated in the most recent operation. lt will be used by
the dynamic voting algorithm to keep track of changes in
the composition of majority partitions, to reinsert recovering
copies into a majoriiy partition and to regenerate a majority
partition for replicated files that are unavailable.

To illustrate these concepts, consider a replicated file
consisting of three physical copies located at sites A, B and
C. Assuming that all sites and all links are operational, the
initial operation numbers o, and version numbers vi are 1
and the partition vector PI are {A, B, C} for all three copies.

A B C
0, v=l 0, v=l 0, v=l

Pn={A, B, C} Pg={A, B, C} PF{A, B, C}

The initial majority partition consists of all three copies A, B
and C. After seven write operations are successfully com-
pleted, the state of the replicated file is represented by:

A B C
o, v=8 o, v=8 o, v=8

PA={A, 6, C} Pg={A, B, C} Pe{A, 6, C}

The majority partition still consists of all three copies A, B
and C. Suppose now that site B fails. Information is
exchanged only at access time, so there is no change in

the state information:

A B C
qv=8 1 0,v=8 I O,V=8

PA={A, B, C} Pg={A, B, C} Pp{A, 6, C}

The partition consisting of sites A and C contains a majority
of the sites included in the previous majority partition. It will
therefore become the new majority partition. After three
more wriie operations, we have the following situation:

A B C
o,V=ll I 0,-8 I O,V=11

PA={A, C} Pg={A, B, C} Pc={A, C}

Assume that the link between A and C fails. Again,
no information is exchanged as a result of the network
failure. We have now a partition of the network into the two
disjoint subsets {A} and {C}. The file will then be in the fol-
lowing configuration :

A B C
O , V = l l I O,V=8 I O,V=11

PA={A, C} PB={A, B. C} Pe{A, C }

We have now exactly one site of the previous major-
ity.partition on each side of the partition. Such situations
where the number of current physical copies within a group
of mutually communicating sites is equal to the number of
current copies not in communication, are not infrequent.
Our protocol accommodates these situations by introducing
a tie breaking rule, as in Lexicographic Dynamic Voting
[Jaj08-/1.

Suppose the sites are ordered so that A > B> C.
Then, after the link between A and C failed, site A, by itself,
constitutes the new majority partition. Site A can determine
this by consulting its partition set and operation number. It
knows that it cannot communicate with site C and that the
previous majority partition consists of the subset {A,C}.
Since A ranks higher than C, the group containing A is the
majority partition. By the same reasoning, site C deter-
mines that it is not the majoriiy partition. Four more write
operations would leave the file in the state:

A B C
0,~=15 I O,e8 1 0 , ~ = 1 l
PA={A} Pg={A, 6, C} P e { A , C}

The basis of our protocol is the algorithm for detect-
ing whether the access request is originating within the
majority partition. Since there can be only one majorii par-
tition, mutual exclusion is guaranteed and consistency is
preserved. There are three sets of information that must be
maintained: the partition set, Pi, which represents the set of
sites which participated in the last successful operation, a
operation number, oi, and a version number, vi, attached to
each site.
Algorlthm 1. Algorithm for deciding whether the current
partition is the majority partition.

l., Find the set of all sites communicating with the
requesting site, call it R.

269

2. Request from each site ieR its partition set Pi, its
operation number oi, and its version number vj.

3. Let OCR be the set of all sites with operation
numbers that match that of the site with the highest
operation number.
Let Pm be the partition set of any site in 0.
If the cardinality of 0 is greater than one half the car-
dinality of P,, or is exactly one half and contains the
maximum element of P, then the current partition is
the majority partition.
A protocol similar to this was developed indepen-

dently by Japdia and Mutchler [JaMu87]. Their protocol
used integer values to represent the previous quorum
instead of the partition sets that are used here. It requires
less storage to implement simple Dynamic Voting, but it
cannot accommodate Lexicographic Dynamic Voting as it
does not keep track of the identity of the maximum element
of the partition set. Our protocol easily includes the lexico-
graphic enhancement, and can be expanded to take topo-
logical information into account.

The algorithm for performing a read operation is sim-
ple. It first ascertains whether the current partition is the
majority partition. This is done in the same way for all of
the algorithms presented. A message is broadcast to all
sites: those that send replies are considered to be in the
current partition. From each of these sites a request is
made for their partition set, operation number and version
number. The set of current sites is found by computing the
maximum operation number of all of the sites. tt is this set
of sites that will participate in the operation. This set of
sites holding upto-date copies is the quorum set. If the
quorum set represents a majority of the previous quorum,
represented by PI, then the access request is granted. If
there is a tie, that is there are exactly one half of the previ-
ous quorum, then a total ordering on the set of sites is used
to decide if access will be granted.

4.
5.

procedure READ(f : file)
begln

let U be the set of all sites participating in the replication

Oc{re R : Or = max,, R{o,}}
S c { r e R : v, = ma,, R{v,}}

(R,o,v, WSTAWU, r)

choose any me Q

If (I 0 1 >U)"(2 I Q I = qAmax(P,)e 0) then
perform the read

ABORT(R)

COMMIT(s, Om+l, V,, s)
else

fl
end READ

Figure 1 : Read Algorithm

Once it has been ascertained that the current parti-
tion is the majoriiy partition, then access can continue. The
read operation is performed and the operation number is
incremented and sent along with the set of current sites to
each of current sites to serve as their new partition sets.
This last action serves to modify the quorum required for
access requests to be granted in the future.

There are several items in Figure 1 that require
explanation. The START operation begins the operation and
returns R which is the set of reachable sites and three
arrays: o,v and P which are the operation numbers, version
numbers and partition sets respectively. The COMMIT
operation completes the operation and transmits the new
consistency control information to all up-to-date copies.

The operation numbers are introduced to speed the
recovery of a site, supplementing the information provided
by the version numbers. There is a choice between the
extra maintenance of the operation number and increased
recovery time. If the version number is incremented on
each read operation, then recovery will be forced to occur
when it is unnecessary. If version numbers alone were
used, and were not incremented for each read operation,
then there would be cases where two majority partitions
could exist. This is because a read operation does not
change the state of the data, and so it should not change
the version number of the data. Instead we chose to imple-
ment the partition set as a data object with a loose con-
sistency constraint.

The algorithm for writing is similar to the algorithm for
reading. Again it is ascertained if the current partition is the
majority partition. If this is successful, proceed as in the
algorithm for reading. The write operation is performed.
The operation number and the version number are incre-
mented and sent along with the set of current sites to all of
the current sites to serve as their new partition sets.

procedure WRITE(f : file)
begln

let U be the set of all sites participating in the replication

Ot- {re R : or = ma,, R {o,}}
S c i r e R : v, = ma, R{v,}}
choose any me 0
If (I Q I M) v (2 I 0 I = qAmax(P,)E Q) then

perform the write

else

fl

(R,o,v, P)~START(~, r)

COMMIT(s, O,+l, V,+l, s)

ABORT(R)

end WRITE

Flgure 2: Write Algorithm

The recovery algorithm begins as do the other algo-
rithms, ascertaining whether the current partition is the

270

majority partition. If the recovering site is able to communi-
cate with the majority partition, then it determines whether
the copy at that site is up-todate. If it is not, then it must be
copied from any of the sites in the quorum set. The recov-
ering site then sends the union of the set of current sites
and itself to all of the current sites, including itself, to serve
as their new partition sets.

procedure RECOVER(f : file)
begin

repeat
let /be the recovering site
let Ube the set of all sites participating in the replication
(R,o,v,P)~sTAM(U, r)
Q+-{re R : 0, = ma, R{o*})
St{rtz R : v, = max,R{v.,}}
choosean meQ

i f y < v,,, then

ti

else

f i

If (I Q I 9 -)v(b m I I 0 I = F m a x (P m) c i Q) then
2

copy the file from slte m

coMMIT(SU{l}, om+l* v,, SUlU)

ABORT(R)

until successful
end RECOVER

Figure 3: Recovery Algorlthm

The advantage of the algoriihms proposed is that
they much the same message traffic overhead as majority
consensus voting, and that their implementation is simple.
There are no assumptions made about the state of the net-
work that which cannot be verified by examining the parti-
tion sets and version numbers.

This method is simple and efficient. It provides con-
sistency control, and more generally, mutual exclusion.
The availability of data and the reliability of access afforded
by this method is superior to majority consensus voting for
only a small increase in network traffic.

3. TOPOLOGICAL DYNAMIC VOTING
Existing dynamic voting algorithms require that any new
majority block contains a majority of the sites that were in
the previous majority partition. As a result, they guarantee
file consistency and enforce mutual exclusion in the pres-
ence of any combination of non-Byzantine site failures and
network partitions. This is not always necessary. Several
classes of local area networks, including unsegmented
carrier-sense networks and token rings, are immune to par-
tial failures that can create a network partition. Special
consistency algorithms have been developed for such
environments. These Available Copv algorithms [EeGo84,
LoPa87, CLP87I are simpler to implement than dynamic
voting protocols and led to much higher file availabilities.

a

Figure 4

Larger local-area networks often consist of several
carrier-sense networks or token rings linked by selective
repeaters or gateway hosts. Since repeaters and gateways
can fail without causing a total network failure, such net-
works can be partitioned. The key difference with conven-
tional point-to-point networks is that sites that are on the
same carrier-sense network or token ring will never be
separated by a partition.

Consider for instance a replicated file with four
copies A, B, C and D such that A and B are on the same
unsegmented carrier-sense network a while C and D are
each on their own segments y and 6. Let Xbe the repeater
linking a and y and Y the one linking a and 6. The
repeaters X and Yare the only possible partition points and
the only possible partitions are {{A, B, C}, {D)},
{{A, B, D}, {C}} and {{A, B}. {C), PI}.

Assume now that the file is in the state

A E C D
0,*15 o,V=15 0, el 1 0, Pa

P A = { ~ B} Pg={A, B} Pc={A. 8, c} PF{A, B, C, 0)

where the majority block consists of sites A and B. Assume
now that site A fails. Under Lexicographic Dynamic Voting,
site Bcannot become the majority partitiin since site A pre-
cedes site B in the lexicographic ordering of sites and the
file should become unavailable. Doing otherwise was
always assumed to be undesirable as it would have lead to
situations where sites A and B would be in two disjoint
majority blocks. The situation is different here. When site B
obtains no answer from site A, it knows that it can result
only from a total failure of the network segment a or from a
failure of site A. Should a be operational, B knows that A
must be unavailable and can safely become the majority
block.

More generally, if m copies of a replicated object
reside on sites that are on the same carrier-sense segment
or token ring, a site attempting to build a new majority block
needs to communicate with only one of the m copies to
ascertain that the m-1 other copies are not likely to be
involved in any incompatible attempt to build a majority

27 I

block. We would like to take advantage of this observation
to increase the availability of replicated objects that have
more than one copy on the same carrier-sense segment or
token ring. We will therefore to modify the dynamic voting
algorithm and allow available sites belonging to the previ-
ous majority block to carry the votes of unavailable sites
belonging to the previous majority block and attached to the
same carrier-sense segment or token ring.

Assume that the copies reside on distinct sites of a
local area network consisting of p indivisible segments al ,
..., up. if Pk denotes the partition set for site k and if Rk is
the set of sites communicating with site k, site k will be able
to gather the votes of all sites jePk that are on the same
segment as an active site ie PknRk.

procedure READ(f : file)
begin

let U be the set of all sites participating in the replication
(4 0, v, &START(U, 0
Q t { r g R : or = ma,, R{o,}}
Sc{rE R : v, = ma,, R{v,}}
choose any me 0
T t { r e Pm : 3ak,3se PmUR r,seak}

If (I T I > E) v (2 I TI = y ~ r n a ~ (P , , ,) ~ 0) then
perform the read

ABORT(R)

COMMIT(s, O,+l, V,,,, s)
else

fl
end READ

Figure 5: Read Algorithm

When all the sites are on the same segment, the
modified topological algorithm degenerates into an avail-
able copy protocol as a quorum is guaranteed as long as
one copy remains available.

Mutual consistency is guaranteed as long as the
same unavailable site belonging to the previous majority
block cannot be concurrently claimed by two disjoint
attempts to build rival majority blocks. Gateway hosts hold-
ing copies cause a special problem as they belong at the
same time to more than one segment and could therefore
be claimed by rival majority blocks. The simplest solution
to this problem is to disallow membership to multiple seg-
ments and to assume that every gateway host belongs to
only one network segment.

Topological Dynamic Voting, as this algorithm is
called, can be easily combined with Optimistic Dynamic
Voting to obtain a more efficient consistency algorithm.
Figures 5, 6 and 7 detail the read, write and recovery algo-
rithms for Optimistic Topological Dynamic Voting. These
three algorithms are very similar to the ones presented in
the previous section, showing the versatility of this partition
set approach.

procedure WRITE(f : file)
begin

let U be the set of all sites participating in the replication
(R,O,V,P)+START(U, r)
Qt{rE R : or = ma,, R{o,}}
S c { r e R : vr = max, *{vs}}
choose any me 0
T t { r e P, : 3 a k , 3 s E PmuR r , s E a k }

If (I T I >,)v(l l p m l T I = q A m a x (P m) E Q) then

perform the write
COMMIT(S, Om+I, Vm+I I S)

else

fi
ABORT(R)

end WRITE

Figure 6: Write Algorithm

procedure RECOVER(f : file)
begin

repeat
let /be the recovering site
let U be the set of all sites participating in the replication
(R,O,V,P)+START(U, r)
Qt{rg R : 0, = ma,, ~{o,}}
%{re R : v, = max, ~ { v ~ } }
choose any me Q

if (1 TI > m) v (2 I T I = F,max(Pm)E 0) then
if vl < v, then

copy the file from site m
fl
COMMIT(Sui/}, o,+l , v,,,, Sui/})

else
ABORT(R)

11

Tc{re P,,, : *k,3SC PmUR 4 S € U d

until successful
end RECOVER

Figure 7: Recovery Algorithm

Since sites can only claim the votes of unavailable
copies residing on the same network segment, the only
additional information required to implement Topological
Dynamic Voting is a list of sites belonging to the same seg-
ment and holding copies of the same object. No global
information about the network topology has to be stored
anywhere, which makes the algorithm well suited to local
area networks with large numbers of hosts.

212

Table 1 : Site Characteristics

Name

CSVaX

beowulf
grendel
wizard
amos

gremlin
rip

mangle
7

Mean Time
To Fail

36.5
10

365
50

365
50
50
50

(days) (min.)
20.0
15
10
15
10
15
15
15

Hardware 1 Fbb;rt 1 Hardware Rc
Failures Constant Part

(hours)
0.0
4
0

168
0

168
168
168

(“w
10
10
90
50
90
50
50
50

Note: Sites 1 , 3 and 5 are unavailable for 3 hours every 90 days for preventive maintenance.

4. SIMULATION ANALYSIS
Stochastic process models have been widely used to
evaluate consistency protocols. Unfortunately, many
difficulties prevent relying solely upon stochastic process
modeling: an exponential distribution of repair times is
unrealistic, but using other distributions result in intract-
able problems in most cases; the problem of modeling
network partitions and site failures simultaneously is
intractable for all but the most basic cases [NKT87l; and
algebraic expressions for file reliability are difficult to
obtain, even for the simplest algorithms and site
configurations. For these and other reasons simulation
has been chosen as a method to evaluate the perfor-
mance of our consistency policies.

An existing network consisting of eight sites and
three carrier-sense segments linked by gateways is used
as a model. As seen on Figure 8, five of the eight sites
are connected on the main carrier-sense segment. One
of these sites is the gateway to the second segment, to
which the sixth site is also connected; another of the five
sites is the gateway to the third segment, to which the
seventh and eighth sites are also connected. Each site,
including the two gateways, is able to store and maintain
copies of a file.

Site failure and repair data are summarized in
Table 1 . Individual values for mean time to failure, per-
centage of hardware faults, repair times for hardware and
software failures and preventive maintenance schedules
were chosen to reflect as accurately as possible the true
behavior of the sites modeled. Exponential failure distri-
butions were chosen for all eight sites and repair times
were modeled by a constant term plus an exponentially
distributed term. Hardware failures normally result in a
human intervention and often require a service call.
Hardware repair times were modeled by a constant term
representing the minimum service time plus an exponen-
tially distributed term representing the actual repair pro-
cess. Since software failures only require a system res-
tart, constant recovery times are a ssumed. The three
carrier-sense segments were assumed not to fail; how-

air Time
Exp. Part
(hours)

2
24
2

168
2

1 68
1 68
168

ever, gateways may fail and cause network partitions.
Message delivery is guaranteed to all active sites in the
current partition when a file access request is made.
Local experience justifies these assumptions.

grI
rip mangle

Figure 8: Network Topology

Access to the replicated file is modeled as a single
user that can access any of the eight sites. The access
requests are granted or refused based solely on the
current state of the sites containing copies and the
algorithm’s capability to guarantee file consistency.
Batch-means analysis was used to compute 95%
confidence intervals for all performance indices. All sites
were operating at the start of the simulation; the time-to-
steady-state interval was taken to be 360 days. A more
detailed description of our simulation model can be found
in [PLG88].

Eight configurations were considered in our study.
The first four consist of three copies. Configuration A is
comprised of copies on sites 1, 2 and 4, which allows for
no partitions. Configuration B consists of copies on sites
1 , 2 and 6 with a single partition point at site 4.
Configuration C has copies on sites 1 , 6 and 8 with one
partition point at site 4 and another at site 5.

273

Table 2: Replicated Flle Unavallabllltles

Sites

A: 1,2,4
8: 1,2,6
C: 1, 6, 8
D: 6, 7, 8
E: 1,2,3, 4
F: 1,2,4,6
G: 1,2, 6,8
H: 1, 2, 7, 8

Consistency Policy
MCV

0.002130
0.003871
0.031 127
0.069342
0.000608
0.002761
0.002027
0.001408

DV
0.004348
0.008281
0.056428
0.1 17683
0.00001 8
0.108034
0.001 51 0

LDV
0.000668
0.001214
0.001 707
0.053592
0.000012
0.002154

, 0.000151
0.004275 I 0.000171

Configuration D is comprised of copies on sites 6, 7 and
8; either site 4 or 5 can cause a partition. The other four
configurations consist of four copies distributed as fol-
lows. Configuration E has copies on sites 1, 2, 3 and 4,
which allows for no partitions. Configuration F is
comprised of copies on sites 1,2,4 and 6 with a partition
point at site 4. Configuration G has copies on sites 1, 2, 6
and 8 with partition points at sites 4 and 5. Finally,
configuration H consists of two pairs of copies at sites 1
and 2 and sites 7 and 8 separated by a single partition
point at site 5.

Table 2 summarizes the unavailabilities of repli-
cated files for all eight configurations and all five con-
sistency policies. Unavailabilities are measured and
displayed since they indicate more clearly the differences
among the policies.

The first finding was that Dynamic Voting (DV) per-
formed worse than Majority Consensus Voting (MCV) for
three copies. This is not surprising since the same con-
clusion had already been reached by Paris and Burkhard
using Markov chains [PaBu86]. Dynamic Voting requires
at least two copies from the previous majority block to
form a new majority block and is more restrictive than
Majoriiy Consensus Voting which only requires two
copies in this case.

For four copies, it was found that Dynamic Voting
performed much better than Majority Consensus Voting in
configurations E and G where partitions are either not
allowed or not likely to cause ties. The situation was dif-
ferent for configurations F and H where the failure of a
single site could result in a tie. For instance, the failure of
site 5 in configuration H will normally leave the system
with two operational groups of the same size. The una-
vailability of the configuration is not essentially different
from the unavailability of a replicated file consisting of a
single copy at site 5. Lexicographic Dynamic Voting
(LDV), which resolves ties, outperforms Majoriiy Con-
sensus Voting and Dynamic Voting in all cases.

The performance of Optimistic Dynamic Voting
(ODV) was measured assuming one file access per day
and expected to obtain unavailabilities intermediary
between those of Majority Consensus Voting, which never
updates quorums, and those of Lexicographic Dynamic

OTDV
0.000013
0.000066
0.003492
0.031 548
0.000000
0.000004
0.000036
0.000043

Voting, where the quorums instantaneously reflect any
change in the network status. For three of the eight
observed configurations, it was found instead that
Optimistic Dynamic Voting performed better than Lexico-
graphic Dynamic Voting. This phenomenon is the most
apparent for configuration F. This configuration has site 4
as its partition point. As table 1 indicates, sites 1 and 2
recover much faster from hardware failures than site 4. It
is therefore better not to update the quorum when site 1
or 2 fails since this does not protect the file against a
failure of site 4 but instead delays file recovery until site 4
is repaired. This is exactly what Optimistic Dynamic Vot-
ing does when the replicated file is accessed once a day.

As expected, Topological Dynamic Voting (TDV)
and Optimistic Topological Dynamic Voting (OTDV) per-
formed much better than all other algorithms when two or
more sites were on the same carrier-sense segment. The
lowest Unavailability figures were obtained for
configuration E, which has the four sites with copies on
the same Ethernet. The simulation indicated that a repli-
cated object with a similar copy configuration could
remain continuously available for more than three hun-
dred years provided no catastrophic failure and no net-
work failure ever occurred during that time interval. Con-
versely a replicated object with every copy dispersed on a
different segment, as it is the case for configuration C,
has the same unavailability under Topological and Lexico-
graphic Dynamic Voting.

The last algorithm studied was Optimistic Topologi-
cal Dynamic Voting (OTDV). As its name indicates, this
algorithm is an optimistic voting algorithm taking into
account the local topology of the network. Except for
configuration C, it was found to perform comparable to or
better than Topological Dynamic Voting.

Also measured for every algorithm and every
configuration was the mean length of time that a repli-
cated file was unavailable. These figures are summar-
ized in table 3.

274

Table 3: Mean Duratlon of Unavallable Perlods

0.0841 41
0.084387
0.1 73151
6.293645
0.0541 7
0.101 756
0.073773
0.060009

sites

0.1 0764
0.08650
0.085960
7.428305

0.05556
0.1 2407
0.1 031 71

A: 1,2,4
B: 1, 2, 6
C: 1, 6, 8
D: 6, 7, 8
E: 1, 2, 3,4
F: 1,2,4,6
G: 1,2, 6,8
H: 1, 2, 7, 8

MCV I DV

5. CONCLUSIONS
In this paper two novel dynamic voting algorithms have
been presented. The first one, called Optimistic Dynamic
Voting, operates on possibly out-of-date information,
which greatly increases the efficiency of the algorithm and
simplifies its implementation. The other, called Topobgi-
cal Dynamic Voting, takes into account the topology of the
network on which the copies reside to increase the availa-
bility of the replicated data.

A realistic simulation model was built to compare
availabilities of replicated data managed by both algo-
rithms with those of data managed by existing voting pro-
tocols. It was found that Optimistic Dynamic Voting per-
formed as well as the best existing voting algorithms while
Topological Dynamic Voting performed much better than
all other voting algorithms when two or more copy reside
in the same non-partitionable group.

It is expected that these two new algorithms will
greatly contribute to a wider usage of dynamic voting for
the management of replicated data. Optimistic Dynamic
Voting and Optimistic Topological Dynamic Voting require
much less message traffic than their non-optimistic coun-
terparts while achieving comparable, and in some case
better, data availabilities. Topological voting greatly
improves the availability of replicated objects with two or
more copies in the same non-partitionable group without
any significant increase in the complexity of the algorithm.
More studies are still needed to investigate the inclusion
of witness copies [Pari861 and to analyze weight assign-
ments.

Acknowledgements
We wish to thank Walter Burkhard and all the other
members of the Gemini group for their help and their
encouragement. This work has been done with the aid of
MACSYMA, a large symbolic manipulation program
developed at the Massachusetts Institute of Technology
Laboratory for Computer Science. MACSYMA is a trade-
mark of Symbolics, Inc. We are also grateful to L. F.
Cabrera and Sam Toueg for their constructive comments.

Consiste
LDV

0.077353
0.078867
0.085960
7.443789
0.081 02
0.275006
0.07787
0.135054

y Policy
ODV I TDV OTDV

0.051 15
0.05337
0.1 731 51
7.445393

0.02252
0.041 49
0.051 964

References
[BGSM] D. Barbara, H. Garcia-Molina and A. Spauster, “Policies for

Dynamic Vote Reassignment;’ Proc. 6th Inr. Conf. on Distri-
buted Computing Systems, (May 1986), pp. 37-44.

[BeGo84] P. A. Bernstein and N. Goodman, “An Algorithm for Con-
currency Control and Recovery in Replicated Distributed Data-
bases.” ACM Trans. on Database Systems. Vol. 9, No. 4
(Dec. 1984), 596615.

[BMP87] W. A. Burkhard, B. E. Martin and J.-F. Paris, “The Gemini
Fault-Tolerant File System: the Management of Replicated
Files.“ Proc. 3rd ht. Conf. on Dam Engineering, (February

J. L. Carroll, D. Long and J.-F. Pans, “Block-Level Consistency
of Replicated Files.” Pmc. 71h Int. Conf. on Disbibured Com-
pufin~ Systems, (Sept. 1987), pp. 146-1 53.

[DaBu85] D. Davmv and WA. Burkhard, “Consistency and Recovery
Control for Replicated Files.” Proc. 10th ACM Symp. on
Operafing System PrMpks, (1985) pp. 87-96.
C. A. Ellis, “Consistency and Conectness of Duplicate Data-
base Systems.” Operating Systems Review, 11,1977.
C. S. Ellis and R. A. Floyd, “The Roe File Systems.” Proc. 3rd
Symp. on ReliabiIiry in Dism‘bured Soliwan9 and Database Sys-
tems, (Oct. 1983), pp. 175-181.

[Garc82] H. Garaa-Molina. “Elections in a Distributed Computer Sys-
tems.” /€€E Trans. on Computers, Vol. C-31, No. 1, (Jan.
l982), 4859.
D. K. Gifford. ‘Weighted Voting for Replicated Data.” Pmc. nb
ACM Symp. on Operetng S y s m Pflnciples. 1 979. 1 50- 1 6 1.
S. Jajodia, “Managing Replicated Files in Partitioned Distri-
buted Database Systems.” Pmc. 3rd h r . Conf. on Data
Engineehg, (February 1987), pp. 412-418.

[JaMu87] S. Jajodia and D. MutcMer, “Dynamic Voting.” Proc ACM

[Lopa871 D. Long and J.-F. Paris, ‘On Improving the Availability of Repli-
cated Files.” fhx. 6th Symp. on Reliabiliry in Disrributed
Soliware and Database Systems. (March i987), pp. 77-83.
Nimla, V. F., V. G. Kulkarni and K. S. Trivedi, “Queueing
Analysis of Fault-Tolerant Computer Systems,” I€€€ Trans.
Soliware Engineerng, Vol. SE-13, No. 3 (March 1987). 363-
375.

[PaBu86] J.-F. Paris and WA. Burkhard, “On the Availability of Dynamic
Voting Schemes.” Technical Report, Department of CSE,
University of California, San Diego.
J.-F. Paris, ‘Voting with Witnesses: A Consistency Scheme for
Replicated Files.” Pmc 6th Int. Conf. on Distributed Comput-
ing Systems, (May 1986). pp. 606-612.
J.-F. Paris. D. Long and A. Glockner. ”A Realistic Evaluation of
Consistency Algorithms for Replicated Files.” Proc. 2ist
AnnualSimulalion Symp.., (March 1988) to appear.

[ScSc83] R. D. Schlichting, and F. B. Schneider, “Fail Stop Processors:
An Approach to Designing Fault-Tolerant Computing Sys-
tems.” ACM Trans. on Computer Systems, 1983.222-238.

1987), pp. 441-440.
[CLP87]

[Elli77)

[EIF183]

[Giff79]

S I G W lQ87AMUaIConr.. (May 1987), pp. 227-238.

[NU871

[Pari861

[PLG88]

275

