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ABSTRACT 

Voting protocols guarantee consistency of replicated data 
in the presence of any scenario involving non-Byzantine 
site failures and network partitions. While Static Majorify 
Consensus Voting algorithms use static quorums, Dynamic 
Voting algorithms dynamically adjust quorums to changes 
in the status of the network of sites holding the copies. 

We propose in this paper two novel dynamic voting 
algorithms. One, called Optimistic Dynamic Voting, 
operates on possibly out-of-date information, which greatly 
increases the efficiency of the algorithm and simplifies its 
implementation. The other, called Topobgical Dynamic 
Voting, explicitly takes into account the topology of the net- 
work on which the copies reside to increase the availability 
of the replicated data. 

We also compare availabilities of replicated data 
managed by both algorithms with those of data managed 
by existing voting protocols using a simulation model with 
realistic parameters. Optimistic Dynamic Voting is found to 
perform as well as the best existing voting algorithms while 
Topological Dynamic Voting performs much better than all 
other voting algorithms when two or more copies reside in 
the same non-partitionable group. 
Keywords: file consistency, fault-tolerant systems, repli- 
cated files, majority consensus voting. 

1. INTRODUCTION 
Distributed systems that maintain multiple copies of some 
data objects need a mechanism to ensure the consistency 
of the objects in the presence of hardware and software 
malfunctions. Although many consistency algorithms for 
replicated files have been introduced in recent years, very 
few studies have been dedicated to the performance of 
these algorithms, either in terms of incurred message over- 
head or in terms of the availability and reliability of the repli- 
cated files managed by such algorithms. As a result, inves- 
tigations in the area of consistency algorithms have often 
been focused on relatively inefficient algorithms such as 
Majority-Consensus Voting (MCV) [Elli77, Giff79, Elli83, 
Garc841. More efficient algorithms such as Available Copy 
[BeGoW, LoPaEq and Dynamic Voting [DaBu85, BGS86, 
Jajo87, PaBu861 have received considerably less attention. 

This work was supported in part by a grant from the NCR Corporation 
and the University of Califomiarucm program. 

Dynamic voting algorithms are especially interesting 
because they provide high reliability and availability while 
handling network partitions correctly. They do have some 
limitations, however. Their implementation is complicated 
by the requirement of instantaneous state information, 
which is costly in terms of network traffic. They also require 
a minimum of three copies to be of any practical interest. 

Section 2 of this paper introduces optimistic dynamic 
voting. Section 3 explains how to improve file availability 
by explicitly taking into account the topology of the network. 
Section 4 analyzes the performance of both protocols using 
a discrete event simulation model with realistic parameters. 
Finally, section 5 has our conclusions. 

2. DYNAMIC VOTING 
The weakness of majority consensus voting and of all other 
static voting protocols is that the quorum is fixed-it can not 
change once the system has begun operation. Because of 
this, a few failures can render the data inaccessible. 
Dynamic Voting [DaBu85] is a consistency and recovery 
control algorithm for replicated objects tailored to environ- 
ments susceptible to site failures and network partitions. 
This policy adjusts the necessary quorum of physical 
copies required for an access operation without manual 
intervention. A group of physical copies, comprised of a 
majority of the current physical copies that can communi- 
cate among themselves, is referred to as the majody block. 

Dynamic voting is based on the concept of the con- 
nection vector. The connection vector instantaneously 
records the state of the network with respect to all sites. 
Each physical copy of a replicated data object has an asso- 
ciated ensemble of state information consisting of the ver- 
sion number and the partition vector. The version number 
of a physical copy represents the number of successful 
write operations to the file that are known to the physical 
copy. The partition vector at a site records the version 
numbers of all sites as they were most recently received by 
that site. 

In its original form dynamic voting allows accesses to 
proceed so long as a strict majority of the current physical 
copies are accessible. In situations where the number of 
current physical copies within a group of mutually commun- 
icating sites is equal to the number of current copies not in 
communication, dynamic voting cannot proceed and 
declares the replicated file to be inaccessible. 

A simple extension proposed by Jajodia [JajoSq, 
known as Leximgrzphic Dynamic Voting, resolves these 
ties by applying a total ordering to the sites. 
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The sites holding copies of the data are given a static 
linear ordering. Then, when a tie occurs, if the group of 
communicating sites contains exactly one-half the current 
physical copies and that group contains the maximum ele- 
ment among the group of current physical copies, that 
group is declared to be the majority black. 

Our experiments [BMP87] have shown that the con- 
nection vector is a diffiiult object to implement. Attempts to 
approximate it can consume nearly all of the available 
machine cycles on a moderate sized site. Since Dynamic 
Voting provides very high availability, but was not practical 
in its original form, alternative methods for implementing it 
were sought. 

2.1. Our Method 
A replicated file will consist of a set of physical copies resid- 
ing on distinct sites of a local area network. These sites can 
fail and the messages they exchange can be lost. It will be 
assumed that sites not operating correctly will immediately 
stop operations and that all messages delivered to their 
destinations will be delivered without alterations in the order 
they were sent. Byzantine failures are expressly excluded. 

A physical copy will be said to be current if it has 
received all wriie requests to the replicated object. A group 
of physical copies, comprised of a majority of the current 
physical copies that can communicate among themselves, 
will be referred to as a majoritypartitbn. 

Every physical copy of a replicated file will maintain 
some state information. This information will include a 
operation number, a version number and a partition set. 
The operation number o, is a positive integer that is incre- 
mented at every successful operation completed by that 
copy. The versbn number vi is a positive integer that 
identifies the last successful write operation on that copy. 
The partition set represents the set of physical copies that 
participated in the most recent operation. lt will be used by 
the dynamic voting algorithm to keep track of changes in 
the composition of majority partitions, to reinsert recovering 
copies into a majoriiy partition and to regenerate a majority 
partition for replicated files that are unavailable. 

To illustrate these concepts, consider a replicated file 
consisting of three physical copies located at sites A, B and 
C. Assuming that all sites and all links are operational, the 
initial operation numbers o, and version numbers vi are 1 
and the partition vector PI are {A, B, C} for all three copies. 

A B C 
0, v=l 0, v=l 0, v=l 

Pn={A, B, C}  Pg={A, B, C} PF{A, B, C}  

The initial majority partition consists of all three copies A, B 
and C. After seven write operations are successfully com- 
pleted, the state of the replicated file is represented by: 

A B C 
o, v=8 o, v=8 o, v=8 

PA={A, 6, C} Pg={A, B, C} Pe{A,  6, C} 

The majority partition still consists of all three copies A, B 
and C. Suppose now that site B fails. Information is 
exchanged only at access time, so there is no change in 

the state information: 

A B C 
qv=8 1 0,v=8 I O,V=8 

PA={A, B, C}  Pg={A, B, C}  Pp{A,  6, C} 

The partition consisting of sites A and C contains a majority 
of the sites included in the previous majority partition. It will 
therefore become the new majority partition. After three 
more wriie operations, we have the following situation: 

A B C 
o,V=ll I 0,-8 I O,V=11 

PA={A, C}  Pg={A, B, C} Pc={A, C}  

Assume that the link between A and C fails. Again, 
no information is exchanged as a result of the network 
failure. We have now a partition of the network into the two 
disjoint subsets {A} and {C}. The file will then be in the fol- 
lowing configuration : 

A B C 
O , V = l l  I O,V=8 I O,V=11 

PA={A, C}  PB={A, B. C} Pe{A,  C }  

We have now exactly one site of the previous major- 
ity.partition on each side of the partition. Such situations 
where the number of current physical copies within a group 
of mutually communicating sites is equal to the number of 
current copies not in communication, are not infrequent. 
Our protocol accommodates these situations by introducing 
a tie breaking rule, as in Lexicographic Dynamic Voting 
[Jaj08-/1. 

Suppose the sites are ordered so that A > B> C. 
Then, after the link between A and C failed, site A, by itself, 
constitutes the new majority partition. Site A can determine 
this by consulting its partition set and operation number. It 
knows that it cannot communicate with site C and that the 
previous majority partition consists of the subset {A,C}. 
Since A ranks higher than C, the group containing A is the 
majority partition. By the same reasoning, site C deter- 
mines that it is not the majoriiy partition. Four more write 
operations would leave the file in the state: 

A B C 
0,~=15 I O,e8 1 0 , ~ = 1 l  
PA={A} Pg={A, 6, C}  P e { A ,  C}  

The basis of our protocol is the algorithm for detect- 
ing whether the access request is originating within the 
majority partition. Since there can be only one majorii par- 
tition, mutual exclusion is guaranteed and consistency is 
preserved. There are three sets of information that must be 
maintained: the partition set, Pi, which represents the set of 
sites which participated in the last successful operation, a 
operation number, oi, and a version number, vi, attached to 
each site. 
Algorlthm 1. Algorithm for deciding whether the current 
partition is the majority partition. 

l., Find the set of all sites communicating with the 
requesting site, call it R. 
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2. Request from each site ieR its partition set Pi, its 
operation number oi, and its version number vj. 

3. Let OCR be the set of all sites with operation 
numbers that match that of the site with the highest 
operation number. 
Let Pm be the partition set of any site in 0. 
If the cardinality of 0 is greater than one half the car- 
dinality of P,, or is exactly one half and contains the 
maximum element of P, then the current partition is 
the majority partition. 
A protocol similar to this was developed indepen- 

dently by Japdia and Mutchler [JaMu87]. Their protocol 
used integer values to represent the previous quorum 
instead of the partition sets that are used here. It requires 
less storage to implement simple Dynamic Voting, but it 
cannot accommodate Lexicographic Dynamic Voting as it 
does not keep track of the identity of the maximum element 
of the partition set. Our protocol easily includes the lexico- 
graphic enhancement, and can be expanded to take topo- 
logical information into account. 

The algorithm for performing a read operation is sim- 
ple. It first ascertains whether the current partition is the 
majority partition. This is done in the same way for all of 
the algorithms presented. A message is broadcast to all 
sites: those that send replies are considered to be in the 
current partition. From each of these sites a request is 
made for their partition set, operation number and version 
number. The set of current sites is found by computing the 
maximum operation number of all of the sites. tt is this set 
of sites that will participate in the operation. This set of 
sites holding upto-date copies is the quorum set. If the 
quorum set represents a majority of the previous quorum, 
represented by PI, then the access request is granted. If 
there is a tie, that is there are exactly one half of the previ- 
ous quorum, then a total ordering on the set of sites is used 
to decide if access will be granted. 

4. 
5. 

procedure READ( f : file) 
begln 

let U be the set of all sites participating in the replication 

Oc{re R : Or = max,, R{o,}} 
S c { r e  R : v, = ma,, R{v,}} 

(R,o,v, WSTAWU, r) 

choose any me Q 

If ( I 0 1 >U)"( 2 I Q I = qAmax(P,)e 0) then 
perform the read 

ABORT( R) 

COMMIT( s, Om+l, V,, s) 
else 

fl 
end READ 

Figure 1 : Read Algorithm 

Once it has been ascertained that the current parti- 
tion is the majoriiy partition, then access can continue. The 
read operation is performed and the operation number is 
incremented and sent along with the set of current sites to 
each of current sites to serve as their new partition sets. 
This last action serves to modify the quorum required for 
access requests to be granted in the future. 

There are several items in Figure 1 that require 
explanation. The START operation begins the operation and 
returns R which is the set of reachable sites and three 
arrays: o,v and P which are the operation numbers, version 
numbers and partition sets respectively. The COMMIT 
operation completes the operation and transmits the new 
consistency control information to all up-to-date copies. 

The operation numbers are introduced to speed the 
recovery of a site, supplementing the information provided 
by the version numbers. There is a choice between the 
extra maintenance of the operation number and increased 
recovery time. If the version number is incremented on 
each read operation, then recovery will be forced to occur 
when it is unnecessary. If version numbers alone were 
used, and were not incremented for each read operation, 
then there would be cases where two majority partitions 
could exist. This is because a read operation does not 
change the state of the data, and so it should not change 
the version number of the data. Instead we chose to imple- 
ment the partition set as a data object with a loose con- 
sistency constraint. 

The algorithm for writing is similar to the algorithm for 
reading. Again it is ascertained if the current partition is the 
majority partition. If this is successful, proceed as in the 
algorithm for reading. The write operation is performed. 
The operation number and the version number are incre- 
mented and sent along with the set of current sites to all of 
the current sites to serve as their new partition sets. 

procedure WRITE( f : file) 
begln 

let U be the set of all sites participating in the replication 

Ot- {re R : or = ma,, R {o,}} 
S c i r e  R : v, = ma, R{v,}} 
choose any me 0 
If ( I Q I M ) v (  2 I 0 I = qAmax(P,)E Q ) then 

perform the write 

else 

fl  

(R,o,v, P)~START(~, r) 

COMMIT( s, O,+l, V,+l, s) 

ABORT( R)  

end WRITE 

Flgure 2: Write Algorithm 

The recovery algorithm begins as do the other algo- 
rithms, ascertaining whether the current partition is the 
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majority partition. If the recovering site is able to communi- 
cate with the majority partition, then it determines whether 
the copy at that site is up-todate. If it is not, then it must be 
copied from any of the sites in the quorum set. The recov- 
ering site then sends the union of the set of current sites 
and itself to all of the current sites, including itself, to serve 
as their new partition sets. 

procedure RECOVER( f : file) 
begin 

repeat 
let /be the recovering site 
let Ube the set of all sites participating in the replication 
(R,o,v,P)~sTAM(U, r )  
Q+-{re R : 0, = ma, R{o*}) 
St{rtz R : v, = max,R{v.,}} 
choosean meQ 

i f  y < v,,, then 

ti 

else 

f i  

If ( I Q I 9 -)v( b m  I I 0 I = F m a x ( P m ) c i  Q) then 
2 

copy the file from slte m 

coMMIT(SU{l}, om+l* v,, SUlU) 

ABORT( R) 

until successful 
end RECOVER 

Figure 3: Recovery Algorlthm 

The advantage of the algoriihms proposed is that 
they much the same message traffic overhead as majority 
consensus voting, and that their implementation is simple. 
There are no assumptions made about the state of the net- 
work that which cannot be verified by examining the parti- 
tion sets and version numbers. 

This method is simple and efficient. It provides con- 
sistency control, and more generally, mutual exclusion. 
The availability of data and the reliability of access afforded 
by this method is superior to majority consensus voting for 
only a small increase in network traffic. 

3. TOPOLOGICAL DYNAMIC VOTING 
Existing dynamic voting algorithms require that any new 
majority block contains a majority of the sites that were in 
the previous majority partition. As a result, they guarantee 
file consistency and enforce mutual exclusion in the pres- 
ence of any combination of non-Byzantine site failures and 
network partitions. This is not always necessary. Several 
classes of local area networks, including unsegmented 
carrier-sense networks and token rings, are immune to par- 
tial failures that can create a network partition. Special 
consistency algorithms have been developed for such 
environments. These Available Copv algorithms [EeGo84, 
LoPa87, CLP87I are simpler to implement than dynamic 
voting protocols and led to much higher file availabilities. 

a 

Figure 4 

Larger local-area networks often consist of several 
carrier-sense networks or token rings linked by selective 
repeaters or gateway hosts. Since repeaters and gateways 
can fail without causing a total network failure, such net- 
works can be partitioned. The key difference with conven- 
tional point-to-point networks is that sites that are on the 
same carrier-sense network or token ring will never be 
separated by a partition. 

Consider for instance a replicated file with four 
copies A, B, C and D such that A and B are on the same 
unsegmented carrier-sense network a while C and D are 
each on their own segments y and 6. Let Xbe the repeater 
linking a and y and Y the one linking a and 6. The 
repeaters X and Yare the only possible partition points and 
the only possible partitions are {{A, B, C}, {D)}, 
{{A, B, D}, {C}} and {{A, B}. {C), PI}. 

Assume now that the file is in the state 

A E C D 
0,*15 o,V=15 0, el 1 0, Pa 

P A = { ~  B} Pg={A, B} Pc={A. 8, c} PF{A, B, C, 0) 

where the majority block consists of sites A and B. Assume 
now that site A fails. Under Lexicographic Dynamic Voting, 
site Bcannot become the majority partitiin since site A pre- 
cedes site B in the lexicographic ordering of sites and the 
file should become unavailable. Doing otherwise was 
always assumed to be undesirable as it would have lead to 
situations where sites A and B would be in two disjoint 
majority blocks. The situation is different here. When site B 
obtains no answer from site A, it knows that it can result 
only from a total failure of the network segment a or from a 
failure of site A. Should a be operational, B knows that A 
must be unavailable and can safely become the majority 
block. 

More generally, if m copies of a replicated object 
reside on sites that are on the same carrier-sense segment 
or token ring, a site attempting to build a new majority block 
needs to communicate with only one of the m copies to 
ascertain that the m-1 other copies are not likely to be 
involved in any incompatible attempt to build a majority 
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block. We would like to take advantage of this observation 
to increase the availability of replicated objects that have 
more than one copy on the same carrier-sense segment or 
token ring. We will therefore to modify the dynamic voting 
algorithm and allow available sites belonging to the previ- 
ous majority block to carry the votes of unavailable sites 
belonging to the previous majority block and attached to the 
same carrier-sense segment or token ring. 

Assume that the copies reside on distinct sites of a 
local area network consisting of p indivisible segments al , 
..., up. if Pk denotes the partition set for site k and if Rk is 
the set of sites communicating with site k, site k will be able 
to gather the votes of all sites jePk that are on the same 
segment as an active site ie PknRk. 

procedure READ( f : file) 
begin 

let U be the set of all sites participating in the replication 
(4 0, v, &START( U, 0 
Q t { r g  R : or = ma,, R{o,}} 
Sc{rE R : v, = ma,, R{v,}} 
choose any me 0 
T t { r e  Pm : 3ak,3se PmUR r,seak} 

If ( I  T I  > E ) v (  2 I TI = y ~ r n a ~ ( P , , , ) ~  0) then 
perform the read 

ABORT( R) 

COMMIT( s, O,+l, V,,,, s) 
else 

fl 
end READ 

Figure 5: Read Algorithm 

When all the sites are on the same segment, the 
modified topological algorithm degenerates into an avail- 
able copy protocol as a quorum is guaranteed as long as 
one copy remains available. 

Mutual consistency is guaranteed as long as the 
same unavailable site belonging to the previous majority 
block cannot be concurrently claimed by two disjoint 
attempts to build rival majority blocks. Gateway hosts hold- 
ing copies cause a special problem as they belong at the 
same time to more than one segment and could therefore 
be claimed by rival majority blocks. The simplest solution 
to this problem is to disallow membership to multiple seg- 
ments and to assume that every gateway host belongs to 
only one network segment. 

Topological Dynamic Voting, as this algorithm is 
called, can be easily combined with Optimistic Dynamic 
Voting to obtain a more efficient consistency algorithm. 
Figures 5, 6 and 7 detail the read, write and recovery algo- 
rithms for Optimistic Topological Dynamic Voting. These 
three algorithms are very similar to the ones presented in 
the previous section, showing the versatility of this partition 
set approach. 

procedure WRITE( f : file) 
begin 

let U be the set of all sites participating in the replication 
(R,O,V,P)+START(U, r )  
Qt{rE R : or = ma,, R{o,}} 
S c { r e  R : vr = max, *{vs}} 
choose any me 0 
T t { r e  P, : 3 a k , 3 s E  PmuR r , s E a k }  

If ( I  T I  >,)v(l l p m l  T I  = q A m a x ( P m ) E Q )  then 

perform the write 
COMMIT( S, Om+I, Vm+I I S) 

else 

fi 
ABORT( R) 

end WRITE 

Figure 6: Write Algorithm 

procedure RECOVER( f : file) 
begin 

repeat 
let /be the recovering site 
let U be the set of all sites participating in the replication 
(R,O,V,P)+START(U, r )  
Qt{rg R : 0, = ma,, ~{o,}} 
%{re R : v, = max, ~ { v ~ } }  
choose any me Q 

if ( 1 TI  > m ) v (  2 I T I = F,max(Pm)E 0 ) then 
if vl < v, then 

copy the file from site m 
fl 
COMMIT( Sui/}, o,+l , v,,,, Sui/} )  

else 
ABORT( R)  

11 

Tc{re P,,, : *k,3SC PmUR 4 S € U d  

until successful 
end RECOVER 

Figure 7: Recovery Algorithm 

Since sites can only claim the votes of unavailable 
copies residing on the same network segment, the only 
additional information required to implement Topological 
Dynamic Voting is a list of sites belonging to the same seg- 
ment and holding copies of the same object. No global 
information about the network topology has to be stored 
anywhere, which makes the algorithm well suited to local 
area networks with large numbers of hosts. 
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Table 1 : Site Characteristics 

Name 

CSVaX 

beowulf 
grendel 
wizard 
amos 

gremlin 
rip 

mangle 
7 

Mean Time 
To Fail 

36.5 
10 

365 
50 

365 
50 
50 
50 

(days) (min.) 
20.0 
15 
10 
15 
10 
15 
15 
15 

Hardware 1 Fbb;rt 1 Hardware Rc 
Failures Constant Part 

(hours) 
0.0 
4 
0 

168 
0 

168 
168 
168 

(“w 
10 
10 
90 
50 
90 
50 
50 
50 

Note: Sites 1 , 3  and 5 are unavailable for 3 hours every 90 days for preventive maintenance. 

4. SIMULATION ANALYSIS 
Stochastic process models have been widely used to 
evaluate consistency protocols. Unfortunately, many 
difficulties prevent relying solely upon stochastic process 
modeling: an exponential distribution of repair times is 
unrealistic, but using other distributions result in intract- 
able problems in most cases; the problem of modeling 
network partitions and site failures simultaneously is 
intractable for all but the most basic cases [NKT87l; and 
algebraic expressions for file reliability are difficult to 
obtain, even for the simplest algorithms and site 
configurations. For these and other reasons simulation 
has been chosen as a method to evaluate the perfor- 
mance of our consistency policies. 

An existing network consisting of eight sites and 
three carrier-sense segments linked by gateways is used 
as a model. As seen on Figure 8, five of the eight sites 
are connected on the main carrier-sense segment. One 
of these sites is the gateway to the second segment, to 
which the sixth site is also connected; another of the five 
sites is the gateway to the third segment, to which the 
seventh and eighth sites are also connected. Each site, 
including the two gateways, is able to store and maintain 
copies of a file. 

Site failure and repair data are summarized in 
Table 1 .  Individual values for mean time to failure, per- 
centage of hardware faults, repair times for hardware and 
software failures and preventive maintenance schedules 
were chosen to reflect as accurately as possible the true 
behavior of the sites modeled. Exponential failure distri- 
butions were chosen for all eight sites and repair times 
were modeled by a constant term plus an exponentially 
distributed term. Hardware failures normally result in a 
human intervention and often require a service call. 
Hardware repair times were modeled by a constant term 
representing the minimum service time plus an exponen- 
tially distributed term representing the actual repair pro- 
cess. Since software failures only require a system res- 
tart, constant recovery times are a ssumed. The three 
carrier-sense segments were assumed not to fail; how- 

air Time 
Exp. Part 
(hours) 

2 
24 
2 

168 
2 

1 68 
1 68 
168 

ever, gateways may fail and cause network partitions. 
Message delivery is guaranteed to all active sites in the 
current partition when a file access request is made. 
Local experience justifies these assumptions. 

grI 
rip mangle 

Figure 8: Network Topology 

Access to the replicated file is modeled as a single 
user that can access any of the eight sites. The access 
requests are granted or refused based solely on the 
current state of the sites containing copies and the 
algorithm’s capability to guarantee file consistency. 
Batch-means analysis was used to compute 95% 
confidence intervals for all performance indices. All sites 
were operating at the start of the simulation; the time-to- 
steady-state interval was taken to be 360 days. A more 
detailed description of our simulation model can be found 
in [PLG88]. 

Eight configurations were considered in our study. 
The first four consist of three copies. Configuration A is 
comprised of copies on sites 1, 2 and 4, which allows for 
no partitions. Configuration B consists of copies on sites 
1 ,  2 and 6 with a single partition point at site 4. 
Configuration C has copies on sites 1 ,  6 and 8 with one 
partition point at site 4 and another at site 5. 
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Table 2: Replicated Flle Unavallabllltles 

Sites 

A: 1,2,4 
8: 1,2,6 
C: 1, 6, 8 
D: 6, 7, 8 
E: 1,2,3, 4 
F: 1,2,4,6 
G: 1,2, 6,8 
H: 1, 2, 7, 8 

Consistency Policy 
MCV 

0.002130 
0.003871 
0.031 127 
0.069342 
0.000608 
0.002761 
0.002027 
0.001408 

DV 
0.004348 
0.008281 
0.056428 
0.1 17683 
0.00001 8 
0.108034 
0.001 51 0 

LDV 
0.000668 
0.001214 
0.001 707 
0.053592 
0.000012 
0.002154 

, 0.000151 
0.004275 I 0.000171 

Configuration D is comprised of copies on sites 6, 7 and 
8; either site 4 or 5 can cause a partition. The other four 
configurations consist of four copies distributed as fol- 
lows. Configuration E has copies on sites 1, 2, 3 and 4, 
which allows for no partitions. Configuration F is 
comprised of copies on sites 1,2,4 and 6 with a partition 
point at site 4. Configuration G has copies on sites 1, 2, 6 
and 8 with partition points at sites 4 and 5. Finally, 
configuration H consists of two pairs of copies at sites 1 
and 2 and sites 7 and 8 separated by a single partition 
point at site 5. 

Table 2 summarizes the unavailabilities of repli- 
cated files for all eight configurations and all five con- 
sistency policies. Unavailabilities are measured and 
displayed since they indicate more clearly the differences 
among the policies. 

The first finding was that Dynamic Voting (DV) per- 
formed worse than Majority Consensus Voting (MCV) for 
three copies. This is not surprising since the same con- 
clusion had already been reached by Paris and Burkhard 
using Markov chains [PaBu86]. Dynamic Voting requires 
at least two copies from the previous majority block to 
form a new majority block and is more restrictive than 
Majoriiy Consensus Voting which only requires two 
copies in this case. 

For four copies, it was found that Dynamic Voting 
performed much better than Majority Consensus Voting in 
configurations E and G where partitions are either not 
allowed or not likely to cause ties. The situation was dif- 
ferent for configurations F and H where the failure of a 
single site could result in a tie. For instance, the failure of 
site 5 in configuration H will normally leave the system 
with two operational groups of the same size. The una- 
vailability of the configuration is not essentially different 
from the unavailability of a replicated file consisting of a 
single copy at site 5. Lexicographic Dynamic Voting 
(LDV), which resolves ties, outperforms Majoriiy Con- 
sensus Voting and Dynamic Voting in all cases. 

The performance of Optimistic Dynamic Voting 
(ODV) was measured assuming one file access per day 
and expected to obtain unavailabilities intermediary 
between those of Majority Consensus Voting, which never 
updates quorums, and those of Lexicographic Dynamic 

OTDV 
0.000013 
0.000066 
0.003492 
0.031 548 
0.000000 
0.000004 
0.000036 
0.000043 

Voting, where the quorums instantaneously reflect any 
change in the network status. For three of the eight 
observed configurations, it was found instead that 
Optimistic Dynamic Voting performed better than Lexico- 
graphic Dynamic Voting. This phenomenon is the most 
apparent for configuration F. This configuration has site 4 
as its partition point. As table 1 indicates, sites 1 and 2 
recover much faster from hardware failures than site 4. It 
is therefore better not to update the quorum when site 1 
or 2 fails since this does not protect the file against a 
failure of site 4 but instead delays file recovery until site 4 
is repaired. This is exactly what Optimistic Dynamic Vot- 
ing does when the replicated file is accessed once a day. 

As expected, Topological Dynamic Voting (TDV) 
and Optimistic Topological Dynamic Voting (OTDV) per- 
formed much better than all other algorithms when two or 
more sites were on the same carrier-sense segment. The 
lowest Unavailability figures were obtained for 
configuration E, which has the four sites with copies on 
the same Ethernet. The simulation indicated that a repli- 
cated object with a similar copy configuration could 
remain continuously available for more than three hun- 
dred years provided no catastrophic failure and no net- 
work failure ever occurred during that time interval. Con- 
versely a replicated object with every copy dispersed on a 
different segment, as it is the case for configuration C, 
has the same unavailability under Topological and Lexico- 
graphic Dynamic Voting. 

The last algorithm studied was Optimistic Topologi- 
cal Dynamic Voting (OTDV). As its name indicates, this 
algorithm is an optimistic voting algorithm taking into 
account the local topology of the network. Except for 
configuration C, it was found to perform comparable to or 
better than Topological Dynamic Voting. 

Also measured for every algorithm and every 
configuration was the mean length of time that a repli- 
cated file was unavailable. These figures are summar- 
ized in table 3. 
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Table 3: Mean Duratlon of Unavallable Perlods 

0.0841 41 
0.084387 
0.1 73151 
6.293645 
0.0541 7 
0.101 756 
0.073773 
0.060009 

sites 

0.1 0764 
0.08650 
0.085960 
7.428305 

0.05556 
0.1 2407 
0.1 031 71 

A: 1,2,4 
B: 1, 2, 6 
C: 1, 6, 8 
D: 6, 7, 8 
E: 1, 2, 3,4 
F: 1,2,4,6 
G: 1,2, 6,8 
H: 1, 2, 7, 8 

MCV I DV 

5. CONCLUSIONS 
In this paper two novel dynamic voting algorithms have 
been presented. The first one, called Optimistic Dynamic 
Voting, operates on possibly out-of-date information, 
which greatly increases the efficiency of the algorithm and 
simplifies its implementation. The other, called Topobgi- 
cal Dynamic Voting, takes into account the topology of the 
network on which the copies reside to increase the availa- 
bility of the replicated data. 

A realistic simulation model was built to compare 
availabilities of replicated data managed by both algo- 
rithms with those of data managed by existing voting pro- 
tocols. It was found that Optimistic Dynamic Voting per- 
formed as well as the best existing voting algorithms while 
Topological Dynamic Voting performed much better than 
all other voting algorithms when two or more copy reside 
in the same non-partitionable group. 

It is expected that these two new algorithms will 
greatly contribute to a wider usage of dynamic voting for 
the management of replicated data. Optimistic Dynamic 
Voting and Optimistic Topological Dynamic Voting require 
much less message traffic than their non-optimistic coun- 
terparts while achieving comparable, and in some case 
better, data availabilities. Topological voting greatly 
improves the availability of replicated objects with two or 
more copies in the same non-partitionable group without 
any significant increase in the complexity of the algorithm. 
More studies are still needed to investigate the inclusion 
of witness copies [Pari861 and to analyze weight assign- 
ments. 
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Consiste 
LDV 

0.077353 
0.078867 
0.085960 
7.443789 
0.081 02 
0.275006 
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y Policy 
ODV I TDV OTDV 
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