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Abstract
The sheer volume of modern data makes manual file
management impractical. Search-oriented file systems,
where data and metadata are indexed for fast search,
are increasingly viewed as a necessity, everywhere from
desktops to HPC. However, current techniques have been
designed and tested for file system metadata, such as
POSIX metadata, and fail to account for the wide vari-
ety of metadata users would like to search.
In particular, the scientific world has been vocal about

a desire to search extended and content metadata. While
file system metadata is well characterized by a variety of
workload studies, scientific metadata is much less well
understood. We characterize scientific metadata, in or-
der to better understand the implications for index de-
sign. We demonstrate that previously suggested index
structures, such as k-d trees, R-trees, and row major
databases, are not well suited to scientific metadata. Fi-
nally, we provide suggestions for a system design based
on our findings.

1 Introduction

The largest modern file systems contain billions of files,
as many as the Web of only a few years ago. Faced with
these kinds of volumes, manual file navigation and man-
agement is no longer feasible, and similarly to the Web,
users have turned to search as an alternate method of
finding files.
However, search means different things to different

types of users. A system administrator might want to
search for files in order to manage quotas and migrate
files within storage hierarchies, something that can be
done with POSIX and other system generated metadata.
Users, on the other hand, may want to search files by
size or age, but are more interested in searching meta-
data about content [26].
Consider scientists working on a shared computing

system, such as is common in HPC. An astrophysicist

might wish to look for data files with a certain peak
brightness. A biologist might want files about a spe-
cific watershed area. And a geologist might want files
where some set of minerals are present. Each of these
searches is a metadata search, but rather than relying on
universally present system generated metadata, it relies
on metadata that is domain specific, and may be embed-
ded in content.
Scientific metadata can easily outstrip the data it de-

scribes. In many cases the line between data and meta-
data is blurry. For instance, in astronomy a single dataset
may contain raw data such as pixel brightness and loca-
tion, and metadata such as a catalog identifier or a star
name. In these instances file content and extended meta-
data are indistinguishable. In some sense, the difference
is moot. What matters is whether the data can and will
be queried, and how quickly it can be queried. When we
use the term metadata we are referring to both the typi-
cal and extended metadata as well as metadata embedded
in file contents. We discuss fields, a single dimension of
metadata such as temperature or author. And we refer
to items, a single data object and its associated metadata
fields.
Previous works in this field, such as Spyglass [19],

SmartStore [17], Loris [28], and Pantheon [21], even
when purporting to provide good performance for ex-
tended metadata, have focused entirely on testing with
POSIX metadata. Rather than focusing on POSIX meta-
data as a surrogate for other metadata, we examine sci-
entific metadata directly, in order to better understand
the design space of scientific metadata and content in-
dexing systems. We find that scientific metadata is very
unlike POSIX metadata, which is homogenous, low-
dimensional, mostly numeric, and has no missing values.
Scientific metadata can be very sparse, even within a sin-
gle discipline and object type. It is heterogenous, with
different fields for different disciplines. It is very high-
dimensional. It is a mix of numeric, textual, and cate-
gorical data. And in the aggregate, it is large. We will
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demonstrate that approaches used by previous systems,
which have proven highly effective for POSIX metadata,
will perform poorly when faced with the high dimen-
sional, sparse nature of scientific metadata.
One recent approach to indexing metadata is to use a

spatial tree, such as a k-d tree [19], or an R-tree [17].
However, these trees have a number of limitations which
can impair their ability to index metadata. First, they
have poor performance on high dimensional data sets
[8]. Second, they handle missing values poorly, or break
when confronted with them [27]. Last, these structures
are ill-suited for many-to-one data, where a single item
has multiple values for a field.
A second popular approach is to simply throw every-

thing into an external database and index it. However,
this approach also has problems, for example, consis-
tency issues arise when managing metadata outside of
the file system. Additionally, if a naive schema is chosen,
such as a single table in a traditional RDMBS, or sin-
gle B-tree index [21, 15], not only will space be wasted
by the indexing of null values, but the system will have
difficulty indexing multi-valued fields. Many researchers
have previously made compelling arguments for integrat-
ing search deeply into the file system [19, 24]. Integrated
indexing reduces consistency issues, eliminates duplica-
tion of metadata, and can improve performance.
In this paper we characterize scientific metadata from

a variety of different disciplines, and demonstrate that it
is very unlike file system metadata. We provide enough
information to create a realistic scientific metadata snap-
shot which can be used to design and test systems de-
signed for scientific systems. And lastly, we describe is-
sues with previous indexing systems, and provide guide-
lines for future indexing systems designed to handle such
metadata.

2 Data and Experimental Design

In this section, we describe the data sets which we ana-
lyze, and the types of tests we apply. Our analysis is fo-
cused on the twin goals of narrowing index design space
and making it possible to generate realistic synthetic data
sets. In order to get a representative sample of scientific
metadata, we selected a variety of different types of sci-
entific data that are likely to be found on a large comput-
ing installation, drawing from biology, astronomy, and
climate science. Our goal is to characterize what could
be expected in a system where one or more of these data
types is resident. While some scientific computing instal-
lations may handle only a single kind of data, the largest
installations support a wide range of scientific research,
and will have indexes which must support multiple types
of scientific data.

2.1 Data sets
As representative samples of scientific data, we chose
files from Dryad [2], the Wide-field Infrared Survey Ex-
plorer (WISE) All-Sky Release [5], and a historical data
set of carbon-14 observations from Oakridge National
Laboratories [16]. These files cover a wide range of sci-
entific fields which one might find in a large computing
installation, and have very different metadata character-
istics.
Dryad is an online repository for biology data, de-

signed for data sharing after papers are published. Re-
searchers upload their data, along with metadata about
it, to allow other researchers to examine the data and
replicate results. We sampled approximately 31,000
dataset records. Each record had two associated collec-
tions of metadata in two XML formats, one in The Open
Archives Initiative (OAI) Protocol for Metadata Harvest-
ing (a Dublin Core vocabulary) [1], and one in the Meta-
data Encoding & Transmission Standard (METS) [4].
There was some overlap in the metadata, but there were
a number of distinct fields available in each. We chose
to use both to get full coverage, but analyzed them sep-
arately for clarity. The Dryad data was presented as 400
MB of XML data containing 44 unique fields; 14 of the
fields came from OAI, and 30 from METS.
The WISE All-Sky Release is a NASA infrared digital

imaging survey of the entire sky. It is available in its en-
tirety as CSV data from Caltech. It contains a total of 285
unique fields. These are a mix of observation data, sta-
tistical analysis, and descriptive fields. The entire dataset
consists of approximately 564 million records, or 1 TB
of CSV data. For statistical purposes, we took a uniform
random subsample of 10,000 records from the first part
of the catalog, which is sufficient for fitting distributions.
The ORNL Historical C-14 dataset is a scientific

data set consolidated by Oakridge National Laboratories,
drawn from historical observations of oceanic carbon-14.
It contains 14 unique fields. This was the smallest data
set, containing 1478 records, and 154 kB of CSV data;
we did not subsample.

2.2 Statistical Tests
To characterize the data, we look at the following as-
pects. First, we compare the frequency distribution of
data values to common statistical distributions. Second,
we examine the sparsity of fields. Third, we analyze the
arity of fields, i.e. whether a field can be present multiple
times in a single item. Fourth, we look at the overall dis-
tribution of data types for fields, both in terms of storage
and semantic data types. Each of these tests allows us to
reason about how large the data is, how compressible it
is, and how much space a naive index can waste. This
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information is useful to guide choices when building a
scientific data index or indexing system. It can also be
used to generate synthetic data for testing index proto-
types.
The first aspect we examine is frequency distributions.

Frequency distributions are agnostic to data type, facil-
itating direct comparisons of string and numeric data.
The frequency distribution of values within a field is use-
ful when designing and testing indexing systems for per-
formance. For instance, spatial trees can perform quite
well on power law distributed data under certain circum-
stances, as noted by Leung [19]. Frequency distributions
also impact the compressibility of indexes. Long-tailed
data compresses well, while uniform is less compress-
ible.
After visual inspection of frequency distributions, we

select two distributions as being most representative of
the data. These are the uniform distribution, and the Zip-
fian, or power law, distribution. We then apply good-
ness of fit algorithms appropriate for the distribution
(Clauset’s method [12] for power law, Anderson-Darling
for the uniform distribution) to verify our visual intuition,
and select those with negative log likelihood as a match.
Second, we examine sparsity. Sparsity of data is criti-

cal to understand when designing indexes, as very sparse
data can impact the size and behavior of indexes. For in-
stance, spatial trees such as k-d trees are not designed to
deal with missing values. Row based indexing can han-
dle missing values, but must waste space to store them.
We determine the total number of fields possible for any
item, and then calculate what number of those fields were
actually present in each of the individual items.
Third, we examine arity. Arity, or how often a field

can be present in an item, is important in an index choice.
For instance, tabular data can only support one value per
column in a row. Depending on the schema of the data,
a field may be present zero, one, or multiple times. The
data may represent an array of items, such as a list of
authors, or a range, such as a geographic area. Data with
an arity higher than one requires an index design that can
represent multiple values or ranges, and match them to
queries. We determine the distribution of arity in data
sets which support more than one value in a column.
Fourth, we examine the data types of the fields, based

on the data set documentation. The distribution of field
types is useful for index choices, benchmarking and test-
ing. Different index designs are better for text versus
numeric data, and there exist specialized indexes for data
which is geospatial or time based. However, semantic
types such as dates or latitudes cannot be easily distin-
guished from integers and require human intervention to
discover. Knowledge about these can characterize how
much human time is required to maintain indexes. To ex-
amine type distributions, we initially categorize the fields

as numeric or string data. We then further examine them
manually to determine if they are geospatial, categorical,
free text, and so on.

3 Results and Analysis

Here, we describe our findings, and discuss their impli-
cations for index design. We describe the statistical dis-
tributions of the data, the sparsity of the data, the arity,
and the distribution of types. In conjunction with one an-
other, these findings can be used to create realistic bench-
marks, and to make informed decisions when building
indexing systems.

3.1 Distributions
When examining the distribution of value frequencies,
we find that by far the majority of fields were power
law distributed, as shown in Table 1. This suggests that
indexes and compression techniques optimized for long
tailed data will be most effective for scientific data sets.
Very few distributions do not fit either a power law or
uniform distribution. In Figure 1 we show the average
distribution of the power law data frequencies, with er-
ror bars to demonstrate variance. However, a handful of
fields do not fit any known statistical distribution. These
generally have very few values, so might have a recog-
nizable distribution with more data.

Table 1: Frequency distributions in scientific data by percent-
age. Zipfian data will compress well if stored column-wise.
Some data did not fit a known distribution.

Distribution WISE ORNL OAI METS Total
Power law 83% 93% 87% 77% 83%
Uniform 5% 7% 0% 20% 6%
Unrecognized 12% 0% 13% 3% 11%

3.2 Sparsity
Many indexing systems assume a fixed schema, where all
fields are present for all items. In contrast, we find that
even within a single discipline fields tend to be sparse.
Even in the WISE data set, which is primarily observa-
tional data, on average 20% of fields are missing from
objects, as shown in Figure 4. The ORNL C-14 data set
is similar, with about 20% of fields missing, as shown in
Figure 5. Dryad is the most sparse. In Figure 3, we show
that over half of fields are blank for any given object in
the METS metadata. Only a few fields are present in all
items, and these fields tend to be unique identifiers for
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Figure 1: To show goodness of fit, we take the average of all
the power law distributions, then overlay error bars to show the
variance between maximum and minimum values. The vari-
ance is quite low, except for the beginning of the distribution.
This graph has been truncated due to the long tail, but the vari-
ance is minimal after this point.

the system’s use. Of the Dryad metadata, OAI is slightly
less sparse, at 25%.
Sparsity is challenging for spatial tree based indexing

schemes, which handle missing values poorly, if at all.
Most spatial trees cannot place data with missing values
in the tree, and must use estimation techniques to fill in
missing values, creating a large amount of fake data that
must then be stored [27]. A naive row-based index, such
as most databases default to, will also have space impli-
cations. Even if tables are built separately for each data
type, it will still need to store a null for each missing
value [11].
A column store, which only stores data when data is

present for that field, can index sparse data without any
wasted space. Due to the sparse nature of the data we ex-
amine, we believe that a column store would make a bet-
ter choice as storage substrate than traditional row stores
when designing an indexing system for scientific meta-
data.

3.3 Arity
Many indexing schemes assume a tabular, one to one re-
lationship, where each field is present only once. This
holds true for astronomy data, but in biology, we find
many fields with high cardinality for a single item, as
shown in Figure 6. For instance, biology data sets list
every author on the paper, and often list every species
seen during data collection. One item in our data has
over eight hundred species. In addition, we find that one

Figure 2: Dryad OAI is over 25% sparse on average, out of 16
fields.

Figure 3: Dryad METS is over 50% sparse on average, out of
30 fields.

of the fields in the ORNL metadata is numerical data, but
mixes ranges and point values. Any system which sup-
ports a variety of scientific metadata must handle many
to one relationships, and should have a strategy for deal-
ing with range values. Both multi-valued entries and
range entries would thwart most spatial tree or naive row
based approaches, which expect point values. With care-
ful schema design an RDBMS can support many-to-one
relationships and range values, but still suffers from the
sparse nature of the data, and requires a human curator if
schema updates or optimizations are necessary. Column
stores can support high arity natively, and are a better
choice.
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Figure 4: WISE is 20% sparse on average, out of 285 fields,
but that sparsity is concentrated in a few fields.

Figure 5: ORNL C-14 is 20% sparse on average out of 14
fields.

3.4 Data Types

The majority of biology data consists of categorical and
free text data. The only numeric field is a date field.
However, some of the free text fields describe geospatial
locations or ranges. Astronomy data is dominated by nu-
meric data, but some data describes spatial locations, or
consists of a set of flags encoded as a number. Some flag
sets are also encoded as strings. The ORNL C-14 data is
a fairly even mix of strings and numeric data, with some
geospatial data, and a date field encoded as a string. In
aggregate, this suggests that having native index support
for time and space can significantly speed up queries, but
knowledge of the data format is needed, requiring human
intervention. In Table 2, we show the distributions of raw
data types and semantic types.

Figure 6: Dryad arity, with log-scaled frequency. Only 18%
of Dryad fields have a single entry. The majority of fields have
multiple entries, running as high as eight hundred.

Table 2: Data types in scientific data. We examine both storage
types and semantic types that can have specialized indexes.

Distribution (out of 345 fields)
Storage Type 18% strings, 82% numeric
Semantic Type 9% spatial, 4% dates, 16% flag sets,

71% native storage types

Examined together, our findings suggest that previous
approaches to metadata indexing will not scale to scien-
tific metadata. Spatial trees must fill in inferred values
to index sparse data, and row based indexes must index
nulls, wasting space. Spatial trees do not handle high
arity data, and row based indexes require multiple tables
and manual table designs. Neither approach takes advan-
tage of the long tailed nature of data values to offer in-
dex compression, and spatial indexes are not well suited
for text fields. In addition to showing that previous ap-
proaches will degrade or fail when presented with scien-
tific metadata, our findings suggest column stores are a
better choice of storage substrate for sparse, long tailed,
and high arity data.

4 Related Work

Here we describe related work in the areas of file system
indexing, indexing for sparse and semi-structured data,
and metadata studies.

4.1 File System Indexing
File system indexing is a wide field. Here we focus
specifically on systems for searching metadata, rather

5



than text search. Inversion [22] was the first system
to propose integrating indexes into the file system, and
focused on both system and user-supplied metadata.
They proposed replacing the file system with a POST-
GRES database, and defining tables for user-supplied
data types. This ignores sparsity within a given data type,
and the many to one nature of metadata fields.
Spyglass [19] and Smartstore [17], were the first to

suggest using spatial indexes for metadata. While these
performed well on their test data, they focused strictly on
POSIX metadata.
Loris [28] and Pantheon [21] were both indexing sys-

tems tested for system metadata only. Pantheon used B-
trees, which are row-based, and will face challenges with
sparse data. Loris used log-structured merge-trees [23].
BeFS [15] was designed to handle both system meta-

data and extended metadata. In BeFS, all metadata was
stored in a B+-tree, using row-major order. This tech-
nique was effective at desktop scales, but it suffers from
problems with sparse, heterogeneous data.

4.2 Metadata studies
There have been a number of previous metadata stud-
ies. However, they have focused exclusively on file
system metadata and file types, rather than scientific
metadata. For instance, Douceur’s large-scale study of
file-system contents [14], and Agrawal’s five-year study
of file-system metadata [7], also did detailed statistical
analysis of distributions. Both focused on desktops. Im-
pressions [6] extended Agrawal’s work, and used it to
generate realistic file system workloads. Our data can be
used with tools like Impressions to benchmark indexing
using a realistic scientific file system.
On a larger scale, we note Leung’s large scale network

file system study [20], which tracked behavior and file
system metadata for corporate file servers. Perhaps the
closest to our research are Dayal’s study of HPC at rest
[13] andWang’s study of HPCworkloads [29]. However,
they focused on file system metadata.

4.3 Other indexing
Indexing shares many challenges with databases as well
as file systems. Column stores such as C-store [25],
HBase [3], or Cassandra [18], are one popular approach
to dealing with sparse data. These have some advantages
for scientific data, since they are well organized for tasks
such as computing maximums, minimums, and averages.
WideTable [11] was specifically designed to meet

the challenges of extremely sparse high-dimensional in-
dexes. Like us, they note the high prevalence of Zipfian
and long tailed distributions in sparse data.

Patil et al. [24] also explored the question of appropri-
ate architectures for searchable metadata in file systems.
They suggested using BigTable [10] as the underlying
storage for a file system. BigTable has good support for
sparse indexes, and is highly scalable.

5 A Scalable Architecture

Based on our findings, we believe that a column store
has many advantages for indexing scientific metadata,
and that the scale of scientific metadata lends itself to
hierarchical index caching strategies. We propose an ar-
chitecture that uses a column store as a basis for a lazy
index. In a lazy index, fields are stored, unprocessed,
embedded in the data until the first query is issued. Once
a query has been issued, a simple index is built, to fa-
cilitate faster querying, using a parallel technique such
as SciHadoop [9], and stored on disk. As demand goes
up further, the index is optimized, and consolidated with
co-queried fields. In the near future, we intend to explore
the implications of our findings in a fully fledged index-
ing system which incorporates file system metadata, sci-
entific metadata, and content.

6 Conclusions

Scalable searchable file systems will be crucial as users
demand the ability to search ever more of their data,
and understanding the characteristics of data can assist
in making good design decisions. In this paper, we have
examined scientific metadata, and demonstrated that it is
sparse, heterogenous, long tailed, and high dimensional.
Based on our findings, existing approaches to file system
indexing, such as spatial trees and row major databases,
will perform poorly for indexing scientific metadata. We
use our findings to inform a new architecture based on
column stores, which uses lazy indexing to save space
while still offering acceptable query performance.

Acknowledgements

This work has been supported by grants from NASA, the
DoE, and the NSF. We also thank our industrial sponsors.
This publication makes use of data products from

Oakridge National Laboratories, Dryad, and the Wide-
field Infrared Survey Explorer, which is a joint project
of the University of California, Los Angeles, and the
Jet Propulsion Laboratory/California Institute of Tech-
nology, funded by the National Aeronautics and Space
Administration.

6



References

[1] The Open Archives Initiative Protocol for Metadata
Harvesting. http://www.openarchives.org/
OAI/openarchivesprotocol.html.

[2] Dryad. http://www.datadryad.org/, September
2012.

[3] Hbase. http://hbase.apache.org/, September 2012.
[4] Metadata Encoding & Transmission Standard.

http://www.loc.gov/standards/mets/, November
2012.

[5] Wide-field Infrared Survey Explorer (WISE) All-
Sky Release. http://irsadist.ipac.caltech.edu/wise-
allsky/, September 2012.

[6] AGRAWAL, N., ARPACI-DUSSEAU, A. C., AND
ARPACI-DUSSEAU, R. H. Generating realistic im-
pressions for file-system benchmarking. In Pro-
ceedings of the 7th USENIX Conference on File and
Storage Technologies (FAST) (Feb. 2009), pp. 125–
138.

[7] AGRAWAL, N., BOLOSKY, W. J., DOUCEUR,
J. R., AND LORCH, J. R. A five-year study of
file-system metadata. In Proceedings of the 5th
USENIX Conference on File and Storage Technolo-
gies (FAST) (Feb. 2007), pp. 31–45.

[8] BERCHTOLD, S., BÖHM, C., KEIM, D. A., AND
KRIEGEL, H.-P. A cost model for nearest neigh-
bor search in high-dimensional data space. In Pro-
ceedings of the sixteenth ACM SIGACT-SIGMOD-
SIGART symposium on Principles of Database
Sytems (New York, NY, USA, 1997), PODS ’97,
ACM, pp. 78–86.

[9] BUCK, J. B., WATKINS, N., LEFEVRE, J.,
IOANNIDOU, K., MALTZAHN, C., POLYZOTIS,
N., AND BRANDT, S. SciHadoop: array-based
query processing in Hadoop. In Proceedings of
2011 International Conference for High Perfor-
mance Computing, Networking, Storage and Anal-
ysis (New York, NY, USA, 2011), SC ’11, ACM,
pp. 66:1–66:11.

[10] CHANG, F., DEAN, J., GHEMAWAT, S., HSIEH,
W. C., WALLACH, D. A., BURROWS, M., CHAN-
DRA, T., FIKES, A., AND GRUBER, R. E.
Bigtable: A distributed storage system for struc-
tured data. In Proceedings of the 7th Symposium
on Operating Systems Design and Implementation
(OSDI) (Seattle, WA, Nov. 2006).

[11] CHU, E., BECKMANN, J., AND NAUGHTON, J.
The case for a wide-table approach to manage
sparse relational data sets. In Proceedings of the
2007 ACM SIGMOD international conference on
Management of data (New York, NY, USA, 2007),
SIGMOD ’07, ACM, pp. 821–832.

[12] CLAUSET, A., SHALIZI, C. R., AND NEWMAN,
M. E. J. Power-Law Distributions in Empirical
Data. SIAM Review 51, 4 (Nov. 2009), 661–703.

[13] DAYAL, S. Characterizing HEC storage systems at
rest. Tech. rep., Carnegie-Mellon University, 2008.

[14] DOUCEUR, J. R., AND BOLOSKY, W. J. A large-
scale study of file-system contents. In Proceedings
of the 1999 ACM SIGMETRICS international con-
ference on Measurement and modeling of computer
systems (1999), SIGMETRICS ’99.

[15] GIAMPAOLO, D. Practical File System Design
with the Be File Sstem, 1st ed. Morgan Kaufmann,
1999.

[16] GRAVEN, H., KOZYR, A., AND KEY.,
R. M. Historical observations of oceanic
radiocarbon conducted prior to GEOSECS.
http://cdiac.ornl.gov/ftp/oceans/Historical C14 obs/,
2012.

[17] HUA, Y., JIANG, H., ZHU, Y., FENG, D., AND
TIAN, L. SmartStore: A new metadata organiza-
tion paradigm with semantic-awareness for next-
generation file systems. In Proceedings of SC09
(Nov. 2009).

[18] LAKSHMAN, A., AND MALIK, P. Cassandra: a
decentralized structured storage system. SIGOPS
Oper. Syst. Rev. 44, 2 (Apr. 2010), 35–40.

[19] LEUNG, A., SHAO, M., BISSON, T., PASUPATHY,
S., AND MILLER, E. L. Spyglass: Fast, scal-
able metadata search for large-scale storage sys-
tems. In Proceedings of the 7th USENIX Confer-
ence on File and Storage Technologies (FAST) (Feb.
2009), pp. 153–166.

[20] LEUNG, A. W., PASUPATHY, S., GOODSON, G.,
AND MILLER, E. L. Measurement and analysis
of large-scale network file system workloads. In
Proceedings of the 2008 USENIX Annual Technical
Conference (June 2008).

[21] NAPS, J., MOKBEL, M., AND DU, D. Pantheon:
Exascale file system search for scientific comput-
ing. In Scientific and Statistical Database Manage-
ment, J. Bayard Cushing, J. French, and S. Bowers,
Eds., vol. 6809 of Lecture Notes in Computer Sci-
ence. Springer Berlin / Heidelberg, 2011, pp. 461–
469.

[22] OLSON, M. A. The design and implementation
of the Inversion file system. In Proceedings of the
Winter 1993 USENIX Technical Conference (San
Diego, California, USA, Jan. 1993), pp. 205–217.

[23] O’NEIL, P., CHENG, E., GAWLICK, D., AND
O’NEIL, E. The log-structured merge-tree (LSM-
tree). Acta Inf. 33, 4 (June 1996), 351–385.

[24] PATIL, S., GIBSON, G. A., GANGER, G. R.,
LOPEZ, J., POLTE, M., TANTISIROJ, W., AND
XIAO, L. In search of an API for scalable file sys-

7



tems: under the table or above it? In Proceedings
of the 2009 conference on Hot topics in cloud com-
puting (Berkeley, CA, USA, 2009), HotCloud’09,
USENIX Association.

[25] STONEBRAKER, M., ABADI, D., BATKIN, A.,
CHEN, X., CHERNIACK, M., FERREIRA, M.,
LAU, E., LIN, A., MADDEN, S., O’NEIL, E.,
O’NEIL, P., RASIN, A., TRAN, N., AND ZDONIK,
S. C-Store: A column oriented DBMS. In Pro-
ceedings of the 31st Conference on Very Large
Databases (VLDB) (Trondheim, Norway, 2005),
pp. 553–564.

[26] STRONG, C., JONES, S., PARKER-WOOD, A.,
HOLLOWAY, A., AND LONG, D. D. E. Los
Alamos National Laboratory interviews. Tech.
Rep. UCSC-SSRC-11-06, University of California,
Santa Cruz, Sept. 2011.

[27] TALBERT, D. A., AND FISHER, D. An empirical
analysis of techniques for constructing and search-

ing k-dimensional trees. In Proceedings of the sixth
ACM SIGKDD international conference on Knowl-
edge discovery and data mining (New York, NY,
USA, 2000), KDD ’00, ACM, pp. 26–33.

[28] VAN HEUVEN VAN STAERELING, R., AP-
PUSWAMY, R., VAN MOOLENBROEK, D., AND
TANENBAUM, A. Efficient, Modular Metadata
Management with Loris. In Networking, Architec-
ture and Storage (NAS), 2011 6th IEEE Interna-
tional Conference on (July 2011), pp. 278 –287.

[29] WANG, F., XIN, Q., HONG, B., BRANDT, S. A.,
MILLER, E. L., LONG, D. D. E., AND MCLARTY,
T. T. File system workload analysis for large scale
scientific computing applications. In Proceedings
of the 21st IEEE / 12th NASA Goddard Conference
on Mass Storage Systems and Technologies (Col-
lege Park, MD, Apr. 2004), pp. 139–152.

8


