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Abstract

As disk drives have dropped in price relative to tape,
the desire for the convenience and speed of online ac-
cess to large data repositories has led to the deploy-
ment of petabyte-scale disk farms with thousands of
disks. Unfortunately, the very large size of these reposi-
tories renders them vulnerable to previously rare failure
modes such as multiple, unrelated disk failures leading
to data loss. While some business models, such as free
email servers, may be able to tolerate some occurrence
of data loss, others, including premium online services
and storage of simulation results at a national labora-
tory, cannot.

This paper describes the effect of infant mortality on
long-term failure rates of systems that must preserve
their data for decades. Our failure models incorpo-
rate the well-known “bathtub curve,” which reflects the
higher failure rates of new disk drives, a lower, con-
stant failure rate during the remainder of the design life
span, and increased failure rates as components wear
out. Large systems are vulnerable to the “cohort ef-
fect” that occurs when many disks are simultaneously
replaced by new disks. Our more accurate disk mod-
els and simulations have yielded predictions of system
lifetimes that are more pessimistic than existing models
that assume a constant disk failure rate. Thus, larger
system scale requires designers to take disk infant mor-
tality into account.

1. Introduction

Data sets containing hundreds or thousands of ter-
abytes are commonly used today in diverse applications
such as simulation data at a national lab, satellite data
at a national agency, and a web-based email provider.
Advances in disk drive capacity and the decrease in the
cost per gigabyte for disk storage have combined to en-
able the use of a disk farm rather than a tape library to

store such large data sets. A smaller installation might
consist of 3000 one terabyte disk drives with a total user
capacity of 1–2 petabytes, exclusive of redundancy in-
formation, and might grow at the rate of several hundred
terabytes each year. Some applications, such as free
email, can afford to be cavalier about occasionally los-
ing a small amount of data, but often, valuable data can
only be reproduced at high costs and even small losses
can make large amounts of data unusable. Thus, most
large-scale storage systems need to be very reliable.

New phenomena emerge with the sheer size of stor-
age repositories. For example, protection by simply us-
ing RAID 1 or RAID 5 is frequently insufficient because
the chance thatsomeRAID array in the system will ex-
perience data loss is too high [30]. In large systems,
variability in the failure rate of the disks in a system
can contribute to high failure rates because of the pos-
sibility that a single piece of data may, by chance, be
stored on several devices with a relatively high failure
rate. It is well-known that disk drives fail at higher rates
early in their lives, with the failure rate dropping during
the first year and remaining relatively constant for the
remainder of the disk’s useful lifespan, rising again at
the end of the disks lifetime. Because of its shape, the
failure rate curve is called a “bathtub” curve [12, 23].
A typical disk is obsolete before its failure probability
starts to climb, in part because newer drives have much
higher capacity and performance; thus, the tail of the
bathtub curve is of little practical importance. As we
will see, this is not true at the beginning of the curve,
resulting in a phenomenon known asinfant mortality.
The International Disk Drive Equipment and Materials
Association (IDEMA) recently proposed a more sophis-
ticated way to measure disk drive reliability by using
four different MTBF values for disks aged 0–3 months,
3–6 months, 6–12 months, and one year to the end of
design life span [9, 27].

In the remainder of this paper, we show that disk
infant mortality becomes an important factor in very
large storage systems. We argue that autonomous data
management must be based on disk age as well as data
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characteristics, such as those used by AutoRAID [29].
This is particularly true for large-scale storage sys-
tems such as the Federated Array of Bricks [10], Ice-
Cube [17], FARSITE [1], the Google File System [11]
and OceanStore [19], all of which require high system
reliability with no data loss over a long system lifespan.

2. Related Work

Reliability is one of the key characteristics of a stor-
age system. However, in the words of Anderson,et al.
[2], reliability is “one of the trickiest drive character-
istics to measure” because of complex factors includ-
ing duty hours, temperature, altitude, and spindle starts
and stops [9]. Not all disks are equally reliable—
commercial grade SCSI disks tend to be much more re-
liable than consumer grade IDE and ATA disks [26].

An accurate disk reliability model does not yet exist
because the exact distribution of disk drive failure rates
is not known. Even though the bathtub curve is noted in
several early RAID papers [4, 12, 23], many researchers
assume a constant disk failure rate [3, 6, 13, 16, 22, 24].
Disk drive reliability is often quoted as a single value,
the Mean Time Between Failure (MTBF). Recently, El-
erath and IDEMA [9, 27] proposed a more detailed
MTBF rating, consisting of four different values corre-
sponding to drive ages of 0–3 months, 3–6 months, 6–
12 months, and one year to End of Design Life (EODL).

Prior research into storage system reliability falls
into one of two categories: modeling of relatively small-
scale storage systems, and high-level analysis of large-
scale storage systems. RAID system reliability has long
been modeled using Markov models [4, 7, 3, 13, 16, 22],
and Carrasco recently used a bounded technique to
solve an involved model for the availability of a RAID-
5 system [5]. Dugan and Ciardo [8] modeled a repli-
cated file system using Petri nets, which were in turn
solved by a Markov model generated from the Petri
net. Markov modeling has also been used to provide
dependability estimates for cache-based RAID con-
trollers [18] and video on demand systems [20]. Weath-
erspoon and Kubiatowicz [28], on the other hand, stud-
ied the effects of using replication and erasure coding on
the long-term reliability of Oceanstore [19], a global-
scale storage system in which data was very highly
replicated and time to failure detection was on the order
of months. Data in such a system survives by keeping
sufficient redundancy information to survive the loss of
dozens of storage servers, as was done in Glacier [14].
Since Markov models of a multi-exabyte storage system
that can survive the failure of over twenty disks simulta-
neously are likely to be unsolvable, both the Oceanstore
and Glacier researchers used simple probability theory
to estimate system reliability. None of these reliability

studies took infant mortality into account; fortunately,
the inclusion of infant mortality in reliability models has
only a small effect on the small-scale storage systems
that were the focus of most studies, though its influence
on larger systems is more significant, as we will show.

3. System Architecture

While our results and analysis are valid for both
traditional block devices and object-based storage de-
vices (OSDs), we describe them in terms of an OSD-
based storage system. In such a system, data and meta-
data are lumped together as objects stored on OSDs.
On each OSD, a number of objects are collected into
groups of approximately equal size. The groups are
then stored redundantly in the system. We call a group
of data blocks composed of user data and their associ-
ated replicas or parity / erasure code blocks aredun-
dancy group. To achieve this redundancy we can em-
ploy various strategies that differ in timing, storage use,
and availability. A system isk-available if the system
can toleratek disk failures while preserving access to all
its data. For instance, to achieve 1-availability, we can
simply mirror a group on another disk in the system. We
can also assemblem redundancy groups in a reliability
stripe and append a parity group that contains the bit-
wise parity of all the other groups to the stripe, similar to
the technique used in RAID 5. The two schemes differ
in the complexity of updates and recovering data after a
single failure. The need for more reads to recover data
in the RAID 5 scheme leads to longer recovery times
and hence to a greater vulnerability to further disk fail-
ures that create data loss. To achieve higher levels of
availabilities, we can use several different schemes, in-
cluding more replicas, additional parity groups for a re-
liability stripe using techniques such as Reed-Solomon
coding, and assignment of an object group to more than
one reliability stripe.

At any given level of availability, the speed of re-
pair after a failure determines reliability for a specific
storage system. Modern disk drives have hundreds of
gigabytes of capacity and it takes a long time to rebuild
data on a failed disk. For example, rebuilding a 500 GB
disk takes as long as 17 hours. To make matters worse,
the increase in disk capacity has outpaced the increase
in disk bandwidth, making disk repair time even longer
as storage densities increase. In order to achieve high-
speed data repair, we proposed FAst Recovery Mech-
anisms (FARM) [31], a technique that declusters re-
dundancy groups across multiple disk drives in order to
speed up recovery from disk failure. By using declus-
tering, replicas and parities for the objects stored on any
individual OSD are distributed across a set of redun-
dancy groups so that the objects on a failed disk drive
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can be reconstructed by reading the remaining pieces
(replicas or data and parity) stored on multiple disks
(the “data recovery sources”) and then writing the re-
paired objects to multiple disks (the “data recovery tar-
gets”). By utilizing the bandwidth of multiple data re-
covery sources and targets, the process of data recovery
can be done in a distributed fashion, thus shrinking the
windows of vulnerability of data losses.

In the remainder of this paper, we refer to a sys-
tem that uses distributed recovery as a system with FAst
Recovery Mechanism (FARM). Comparatively, a non-
FARM system is a traditional system that reconstructs
the failed data objects on a single disk drive. In princi-
ple, a system with FARM has shorter disk repair time
than a system without FARM.

4. Modeling Infant Mortality

We propose hidden Markov models that consider
high failure rates at the early stage of disk lifetime and
use them in modeling failures of a single disk drive.
Based on our failure models of a single drive, we fur-
ther propose a system-level Markov model, and use it
to observe the cohort effect brought by the high failure
rates of a number of young disks.

4.1. Single Disk Modeling

A disk is a complicated device, consisting of many
electronic, magnetic, mechanical, and chemical compo-
nents. The manufacturing process is complicated and
some errors show up only some time into the lifespan
of the product. For this reason, disk manufacturersburn
in new disks. Since a manufacturer needs to format their
disks at a low level and mark faulty blocks, a disk has al-
ready been operated for some hours before it is shipped
to the end user. Burn-in periods for the more expen-
sive and higher-performing SCSI drives are longer, but
much more limited for the commodity IDE drives; how-
ever, even some SCSI disks are “dead on arrival.” A true
disk failure model would faithfully reflect the possible
states of each disk component after production and cal-
culate the lifespan of a disk by finding the first combi-
nation of conditions that lead to death. The complexity
of the disk renders this approach impossible, (but see
Shah and Elerath [25]). In lieu of modeling disk failure
by modeling their causes, we present a simple Markov
model for disk failure that predicts more reasonable fail-
ure rate behavior.

4.1.1. Measurements Data on failures are hard to
come by and they tend to be poor. Disk producers
have to rely on data provided by customer feedback for
field data, and are reluctant to release failure rates for
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(b) Four-state model.

Figure 1. Hidden Markov models for disk
failure.

fear of the negative impressions such information might
give about their products. To predict failure rates in a
normal use environment, drive manufacturers use life-
acceleration, during which they subject disks to a rigor-
ous “exercise regimen.” Additionally, they use slightly
different internal definitions of failure events and for
that reason alone are reluctant to make data public.

In general, the disk drive industry only advertises
MTBF (Mean Time Between Failures). However, users
tend to observe higher failure rates than expected.
Sometimes the conditions under which disks are de-
ployed are worse than the disk manufacturers assume
when giving the MTBF values, but the fact that fail-
ure rates vary over the lifespan of a disk plays another
important role. For this reason, the reliability standard
R2-98 [27] gives disk failure rates for four different pe-
riods, namely 0–3 months, 3–6 months, 6–12 months,
and one year to the End of Design Life (EODL).

4.1.2. Realistic Disk Failure Models Real disk
failure rates are smooth and not a splice of constant
functions—there is no sudden jump in failure rate af-
ter each three month period. In order to determine the
influence of the exact shape of the disk failure rate func-
tion, we generate several “realistic functions.” First, we
use a simple Hidden Markov Model to generate smooth
failure rates. The simplicity of this model with its few
states allows us to model large systems. In the three
state model in Figure 1(a), State 0 describes a brand
new disk, State 1 a burnt-in disk, and State FS is the
failure state. The failure probability is higher in State 0
than in State 1. As a result, the transition rateα from
State 0 to State FS is higher than the transition rateβ
from State 1 to State FS. The model in Figure 1(b) in-
troduces an intermediate, “burning in” state. For both
models, we generated parameters that closely fit the
IDEMA values shown in Table 2 by calculating a for-
mula for the IDEMA values from our parameters and
then using iterative improvement to solve the result-
ing non-linear equations. We insisted, however, that
the failure rate from 0 to 72 months was exactly that
of the example values. The parameterσ in the three
state model determines the burn-in period. At time 1/σ ,
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parameters / model typeα (%/1000h) β (%/1000h) γ (%/1000h) σ (/year) τ (/year)

HMM-3state 0.618059 0.198044 - 2.796275 -
HMM-4state 0.350385 0.636888 0.198788 53.450 3.0400

Table 1. Parameters of three- and four-state Markov model.

time period (month) / model type 0–3 3–6 6–12 12–72 0–72

HMM-3state 0.5 0.347508 0.253143 0.199810 0.222917
HMM-4state 0.500108 0.349901 0.250027 0.1999988 0.222917

IDEMA 0.5 0.35 0.25 0.2 0.222917

Table 2. Model fits of three- and four-state Markov model, fai lure rate measured in %/1000 hours.

about 63% of all disks are burned in and the failure rate
is 0.37α + 0.63β . Since disk failure rates seem to be-
come constant after about 12 months,σ should have a
value larger than 1. The parameterβ is the terminal fail-
ure rate (recall that we do not model disks that are used
long enough to suffer an increase in failure rate towards
the end) and should be slightly smaller than the 1-year-
to-EODL value. As should be expected, three param-
eters(α,β ,σ) cannot reproduce the four free IDEMA
failure values that determine the overall failure rate, but
they can come quite close. The additional two parame-
ters of the four state model allow a much closer repro-
duction.

Not all failure rates of “actually existing” disks show
the same development of failure rates as they age. In
some cases, the disk failure rate starts out low, but in-
creases sharply for a short amount of time, and then falls
from its peak very much like our Hidden Markov Model
failure rates. We used linear splines in order to gener-
ate the failure rate for this “Real Disk” shown in Fig-
ure 2(a). In addition, we created a linearly decreasing
disk failure rate in the first year of disk lifespan, called
“Linear” in Figure 2(a). We show our simulation re-
sults of data loss probability under the varied disk fail-
ure models in Section 5.2.

Our results taken together indicate that the exact
shape of the failure rate is less important than the mere
existence of infant mortality. This is thus a vindication
of the IDEMA approach that captures a continuous fail-
ure rate in four discrete values.

4.2. System-level Markov Models

Based on the model of a single disk, we can also
use a hidden Markov model to model a large system.
Since the three-state model (new, burnt-in, failed) of
a disk seems to provide a reasonably good model for
thousands of disks, we use it as the base for system
modeling. Our approach is to model a system withN
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(a) Failure rate by IDEMA model, realistic disk model
and linear model.
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(b) Simulated disk failure rate in the first 15 months un-
der various disk failure models, based on 20,000 sam-
ples.

Figure 2. Comparison of failure rate model
of a single disk: the stair-step model pro-
posed by IDEMA, three- and four-state hid-
den Markov models, real disk model, lin-
ear model, and exponential model.

living disks asN + 1 states(i, j), wherei denotes the
number of new disks,j the number of burnt-in disks,
andN = i + j is the total number of disks; this model
would requireN(N + 3)/2 different states to model up
to N failures. Old (and thus burnt-in) disks are replaced
at rateδ ; thus, 1/δ is the economic lifespan of a disk.
To limit the number of states, we make the unrealistic
assumption that upon failure and reconstruction of the
contents of the disk, another disk (either new or burnt
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Figure 3. Markov model for a system with
100 disk drives.
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Figure 4. System MTTF for a 3000 disk sys-
tem using FARM. The system is single fail-
ure resilient, but will lose data if a second
drive fails before the data from the first
one is recovered.

in) is added to the system. If, in addition, we only model
systems that survive a limited number of disk failures
within the window of vulnerability constituted by pre-
vious failures, the resulting Markov model is both rea-
sonable accurate and solvable for relatively large stor-
age systems. For example, Figure 3 shows the Markov
model for a one-available system that uses FARM.

Figure 4 shows the cohort effect on a system with
3,000 drives. We compare two different disk failure
rates, a variable failure rate, incorporating infant mor-
tality, and a constant failure rate that ignores infant mor-
tality, both with the same disk MTBF. In our system,
failed disks can be replaced by either a new disk or a
burned-in disk; the resulting system MTTF is nearly
identical for the two cases. Figure 4 also includes lines
corresponding to disks that fail either with the initial
failure rateα (the lower bound for MTTF) or the ter-
minal failure rateβ (the upper bound for MTTF). It
is important to note that ignoring infant mortality will
result in overestimating total system MTTF, as shown
by the divergence between the “constant failure” line

and the lines that show the system MTTF using our
more realistic model. The divergence between the up-
per and lower bounds and the more realistic models is
more pronounced as disk lifetime increases. We calcu-
lated MTTF values by inverting very large matrices with
LU decomposition so that we could derive a bound for
the numerical error which turned out to be negligible.
One of the more sophisticated methods for solving large
Markov systems needs to be used for systems with tens
of thousands of disks or for systems that survive more
failures.

5. Effects and Mitigation of Infant Mor-
tality

Using simulations, we explored the effects of in-
fant mortality in large-scale storage systems. We first
varied the number of disk drives in a storage system
and found that the distribution of data loss probabil-
ity over six years differs when infant mortality is taken
into account. Next, we studied the various disk replace-
ment strategies, and showed which strategies provided
the best overall system reliability when infant mortality
was considered. Based on these studies, we propose an
adaptive data redundancy scheme to reduce the impact
of infant mortality.

5.1. Simulation Methodology

To examine the effect of infant mortality on large
storage systems, we ran discrete event-driven simula-
tions built with the PARSEC simulation tool [21].

In a simulated storage system, data is distributed ran-
domly by the RUSH [15] placement algorithm, which
probabilistically guarantees that data will be distributed
evenly across all of the disk drives. RUSH supports data
redundancy and gives a list of disk IDs where the cur-
rent pieces of each redundancy group reside on along
with the additional disk IDs which will be used as the
locations of the recovery targets during data recovery
processes. We injected the varied failure models for in-
dividual disk drives, including IDEMA, hidden Markov
models, and the exponential model, into the simulated
storage system composed of thousands of disks. Using
these models, the time to disk failure can be simulated;
this time is then used to schedule the failure events.
Whenever a failure event occurs, a data recovery event
is triggered and the data on the failed disk is copied from
the recovery sources to the recovery targets. When one
or more additional failures happen during the data re-
covery process and the data cannot be rebuilt anymore,
we count it as one occurrence of data loss and record
the timestamp.
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Figure 5. Distribution of data loss proba-
bility for a system with 1000 disk drives
over six simulated years. (Note: Y-axis
scale is different.)

We varied several parameters in our simulation, in-
cluding the number of disk drives in a simulated sys-
tem, the disk failure model, data redundancy configura-
tion (mirroring or RAID 5-like parity scheme), and data
recovery method (distributed recovery with FARM or
traditional disk rebuilding method that we term “Non-
FARM”). For each configuration, we simulated the sys-
tem over a period of six years and repeated the simula-
tion for thousands of times to gather data samples. The
data loss probability was calculated as the total occur-

time (month)
0 3 6 9 12 15 18 21 24

da
ta

 lo
ss

 p
ro

ba
bi

lit
y 

(%
)

0

1

2

3

4
IDEMA (29.515%)
hmm−3state (27.265%)
hmm−4state (27.935%)
Real−Disk (28.845%)
linear (28.505%)
exp (25.030%)

(a) Non-FARM, two-way mirroring.
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Figure 6. Distribution of data loss proba-
bility for a system with 10,000 disk drives
over six simulated years. (Note: Y-axis
scale is different.)

rence of data loss divided by the total number of sim-
ulated samples. By using the recorded timestamps of
data loss occurrence, we also calculated the distribution
of times when data was lost and plot the probability den-
sity function curves of the data loss distribution.

5.2. Effects of Infant Mortality

We simulated systems with various redundancy
mechanisms and either 1,000 disks or 10,000 disks over
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Figure 7. Distribution of System Data Loss
under Two Disk Replacement Strategies.

a period of six years, assuming that initially all drives
were not burnt in, with the results shown in Figures 5
and 6. Two kinds of data redundancy schemes were
simulated: two-way mirroring and 4+1 RAID 5. We
configured the system with FARM, described in Sec-
tion 3) and without FARM respectively. The figures
only include the first 24 months in the graphs to em-
phasize the differences between the naı̈ve model of disk
failure and our model that includes infant mortality. Af-
ter the first 24 months, the data loss probability remains
stable since disk drives become mature and their fail-
ure rates stay the same after the infant period until the
end of disk lifespan (six simulated years). In the graphs,
the percentages on the labels give the data loss proba-
bility over six years for each model. We observed the
presence of higher data loss probability during the first
12 months under the disk failure models that take infant
mortality into consideration. This effect does not ap-
pear under the exponential model which assumes disk
failure rate remains unchanged in a disk’s lifespan. The
effect of infant mortality is more pronounced for larger
systems, as can be seen by comparing the systems with
1,000 and 10,000 disks, implying that designers of large
storage systems that store petabytes of data must con-
sider the effects of infant mortality. Note that the Y-
axis scales in Figure 5 and 6 are not the same. We
also observed that our system reliability did not differ
considerably under the five models of infant mortality:
IDEMA, 3-state hidden Markov, 4-state hidden Markov,
“real disk,” and linear model. This shows that, although
disk infant mortality itself is very important, the precise
shape of the failure rate curve is less crucial.

Our generic system distributes the objects in a reli-
ability group over all the disks in the system. Under
these conditions, if a disk dies, its contents are recon-
structed by reading from all the surviving disks in the
system and written to the same set of disks. For many
reasons, including modularity and easy administration,
we might want to localize the placement of reliability
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Figure 8. Disk Replacement Strategies.

groups; thus, we explored the effects of infant mortality
on such a restriction. To do this, we constrained the dis-
tribution of objects in a reliability group to aclusterof
disks; the resulting simulation modeled a storage sys-
tem withN = 10000 disks, divided intoC clusters with
N/C disks each. Within each cluster, we used mirror-
ing (RAID 1) and RAID 5. As expected, our simulation
suggested that clustering had no significant influence on
the system failure rate.

5.3. Disk Replacement Strategy

Disk replacement strategy becomes an important is-
sue for a large-scale storage system due to the cohort ef-
fect caused by infant mortality. For example, a new stor-
age system with 10,000 disk drives and two petabytes
of data capacity will lose about 10% of the disks due
to premature (unplanned) disk failure during the disks’
design life span. The disks to replace these failed disks
will be added in batches. The remaining 9,000 disk
drives must be replaced when they reach their EODL,
resulting, again, in a system with many young disk
drives. While the failure rate of individual drives does
not increase much, system failure time does increase
dramatically as the average age of disks in the system
is reset. The system failure rate jumps when we con-
centrate disk drive replacement—as Figure 7 shows, the
peak likelihood of data loss occurs during the drive re-
placement period. A more gradual policy spreads the
replacement out and avoids the marked jump. We ex-
perimented with two gradual replacement policies:age-
basedandrandomreplacement. In the age-based pol-
icy, disks to be replaced in a given year are identified
at the start of the year; 1/12 of this pool is replaced
each month, replacing the oldest disks first. To mea-
sure sensitivity to granularity, we also investigate a bi-
mensal policy. In the random policy, we replaced disk
drives completely randomly regardless of their age at a
rate that on average lets disks stay the length of the de-
signed life cycle. Again, we replace in batches; either
every month or every other month.

Table 3 lists the data loss probability over ten years
under various disk replacement policies. When we re-
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Age-based RandomReplacement Policy Concentrated
split-6 split-12 split-6 split-12

Data Loss Probability 3.59% 3.22% 3.21% 3.22% 3.21%

Table 3. Data Loss Probability under Various Disk Replaceme nt Strategies.

Table 4. Data Loss Probability for Adaptive Redundancy Sche mes.
2×mirror 3→ 2× after 6 mo. 3 → 2× after 12 mo 4+1 RAID5 4+2→ 4+1 after 6 mo. 4+2→ 4+1 after 12 mo.

Non-FARM 27.935% 21.02% 18.38% 70.53% 62.14% 58.17%
FARM 2.96% 1.96% 1.72% 12.55% 9.12% 7.96%
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Figure 9. Distribution of data loss probability for a system under adaptive data redundancy
schemes.

place disk drives in a concentrated way, data loss is
about 12% more likely in ten-year period. During the
replacement time (from the fifth year to the sixth year)
data loss probability is 0.64% by gradual replacement,
but 1.06% in concentrated replacement, due to the co-
hort effect. Once new disk drives are added to the
system, data reorganization is done by using a fast al-
gorithm [15]. We use a scheme that places no more
than one replica out of two of any data object on the
the newly-added disks. As a result, we do not observe
much data loss occurrence after the replacement period,
as Figure 7 shows. However, we found that the extra
bookkeeping effort of age-based gradual replacement
does not gain an advantage over random gradual re-
placement. This is good news for the management of
large-scale storage systems.

5.4. Data Protection Based on Disk Drive Age

In addition to judicious replacement of drives, we
can also adjust the redundancy to the risk inherent in
the system. We considered two simple schemes. First,
instead of simply mirroring objects when one object is
stored on disk that is less thanT months old, we kept
three copies of the object. Second, we usem+ k re-
dundancy unless one of the object groups is stored on a
disk less thanT months old. If this is the case, we add
one additional parity object. In both schemes, if there is
only one disk that is less thanT months old and if the
randomly selected new disk is older, then we merely re-
place the not yet burnt in disk with the older one.

In our first experiment, we simulated a system with
10,000 initially new disks, all using the failure rate pre-
dicted by our 4 state Markov model. We used replica-
tion andm+ k RAID 6 as our redundancy scheme. In
the adaptive scheme, we switched from a more aggres-
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sive redundancy scheme (triplication, 4+2) to a less ag-
gressive scheme (mirroring, 4+1 RAID 5) after six and
twelve months respectively for a total six years of simu-
lation time. We present the data loss probability over the
six years under varied configurations (based on 20,000
data points for each scheme) in Table 4. We further
plot the probability density function curves of data loss
distribution to examine the infant mortality effect un-
der the adaptive data redundancy schemes. As shown in
Figure 9, we observe that the data loss probability when
the storage system is young is greatly reduced by our
adaptive data redundancy schemes as compared to the
static redundancy scheme.

6. Conclusions and Future Work

Reliability of large disk based systems as well as pre-
cise modeling of disk drives still poses many unsolved
problems. We have discussed the effect of disk infant
mortality and have shown that it has an effect on storage
systems with tens of thousands of disks. By comparing
the results obtained with different disk models, we have
shown that the exact failure rate curve is less important
than the mere consideration of infant mortality. This
opens the possibility to use analytical Markov models
to calculate the reliability of systems of this size.

A few disk drives with a higher failure rate than nor-
mal do not cause damage in the large scale systems that
are currently deployed or under development. Rather,
system failure rate shoots up only if large numbers of
disks have elevated failure rates. To avoid the “cohort
effect,” we suggest introducing new disks into the sys-
tem in reasonably small batches—when disks need to
be replaced because of their age, a gradual approach is
noticeably better.

In addition to limiting the cohort effect, we can ad-
just the data protection scheme in response to its pres-
ence. We have shown that an adaptive data redundancy
scheme that adds a stronger data protection for a batch
of disk drives at their young ages will greatly reduce the
high data loss rate brought by the effect of infant mor-
tality. This suggests that a large-scale storage system
has to manage redundancy autonomously, taking infant
mortality into account, just as other systems such as Au-
toRAID [29] manage data storage autonomously based
on data access patterns.

In future work, we will address the problem of effi-
cient calculation. We will use this capability and simu-
lation to investigate further efficient strategies of coping
with variable disk failure rate, such as storage manage-
ment based on disk age hierarchy. We will also study
the effect of infant mortality on long-term system relia-
bility.
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