
7

Can We Group Storage? Statistical Techniques to Identify Predictive
Groupings in Storage System Accesses

AVANI WILDANI, The Salk Institute for Biological Studies
ETHAN L. MILLER, University of California, Santa Cruz

Storing large amounts of data for different users has become the new normal in a modern distributed
cloud storage environment. Storing data successfully requires a balance of availability, reliability, cost, and
performance. Typically, systems design for this balance with minimal information about the data that will
pass through them. We propose a series of methods to derive groupings from data that have predictive value,
informing layout decisions for data on disk.

Unlike previous grouping work, we focus on dynamically identifying groupings in data that can be gathered
from active systems in real time with minimal impact using spatiotemporal locality. We outline several
techniques we have developed and discuss how we select particular techniques for particular workloads and
application domains. Our statistical and machine-learning-based grouping algorithms answer questions
such as “What can a grouping be based on?” and “Is a given grouping meaningful for a given application?”
We design our models to be flexible and require minimal domain information so that our results are as
broadly applicable as possible. We intend for this work to provide a launchpad for future specialized system
design using groupings in combination with caching policies and architectural distinctions such as tiered
storage to create the next generation of scalable storage systems.

Categories and Subject Descriptors: I.5.1 [Pattern Recognition]: Models; D.4.2 [Operating Systems]:
Storage Management

General Terms: Design, Algorithms, Measurement, Performance

Additional Key Words and Phrases: Data layout, storage optimization, tiered storage, predictive modeling

ACM Reference Format:
Avani Wildani and Ethan L. Miller. 2016. Can we group storage? Statistical techniques to identify predictive
groupings in storage system accesses. ACM Trans. Storage 12, 2, Article 7 (February 2016), 33 pages.
DOI: http://dx.doi.org/10.1145/2738042

1. INTRODUCTION

A pressing issue in systems is management of “big data,” data that is too massive to
immediately process, which leads to results that themselves are nontrivial to process
and store. Moreover, big data is likely to be stored on a petascale or exascale storage
system that is designed around the paradigm of “cloud computing,” meaning that the
multiuser, multiapplication system must appear as a dedicated server to each user.

This research was also supported in part by the National Science Foundation under awards CNS-0917396
(part of the American Recovery and Reinvestment Act of 2009 [Public Law 111-5]) and IIP-0934401, and by
the Department of Energy’s Petascale Data Storage Institute under award DE-FC02-06ER25768. We also
thank Sandia National Laboratories and the industrial sponsors of the Storage Systems Research Center
and the Center for Research in Intelligent Storage for their generous support.
Authors’ addresses: A. Wildani, Dept. of Math & CS, Emory University, 400 Dowman Dr., W401, Atlanta,
GA 30322; email: avani@mathcs.emory.edu; E. L. Miller, Computer Science Department, Baskin School of
Engineering, University of California, 1156 High Street, MS SOE3; email: elm@soe.ucsc.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2016 ACM 1553-3077/2016/02-ART7 $15.00
DOI: http://dx.doi.org/10.1145/2738042

ACM Transactions on Storage, Vol. 12, No. 2, Article 7, Publication date: February 2016.

http://dx.doi.org/10.1145/2738042
http://dx.doi.org/10.1145/2738042

7:2 A. Wildani and E. L. Miller

This article approaches the problem of availability and power requirements of big
data on large, heterogeneous systems by identifying groups within the data that share
a high probability of coaccess to approximate a dedicated server for different users or
applications through informed cache population and data layout. Similar grouping in
specialized systems has been shown to help avoid crossing track boundaries [Schindler
et al. 2002], isolate faults [Sivathanu et al. 2005], and avoid power consumption from
excessive disk activity [Pinheiro and Bianchini 2004]. The main contributions of our
grouping methods are adaptability and domain independence. By examining the basic
statistics of the training workloads, we can quickly adjust our model to changes in
workload characteristics.

We define a group as any set of storage units, such as blocks, files, or objects, that
are likely to be accessed together within a defined amount of time, which is typically a
function of the rate of storage requests. Consequently, any element of a group acts as a
predictor for other elements in that group. Groups typically arise from working sets of
user or application data, though they can also represent higher-level correlations such
as interapplication dependencies and operating system interactions.

In an ideal world, we would be able to group objects based on either data con-
tents of the application, user, or use case typical for that object. We term this sort
of information-driven labeling categorical grouping. Categorical grouping is a well-
studied problem [Arpaci-Dusseau et al. 2006], and thus for datasets with rich meta-
data, we can treat the grouping problem as mostly solved and focus on datasets that
lack this metadata.

We show that with the level of input or output requests per second (IOPS) in modern
storage systems, it is possible to collect enough data in real time to identify statistically
based groupings that can predict future access patterns, even in the absence of any
metadata. We discuss a variety of techniques for finding groups in this data including
graph theoretic clique formation and agglomerative clustering, but we primarily focus
on a naı̈ve statistical method we developed called N-Neighborhood Partitioning (NNP).
NNP runs in O(n) and is less memory intensive than our other methods, making it
the best choice for a high IOPS environment with quickly shifting workloads. Slower
techniques are reserved for more steady workloads where calculations can be done over
a long period of time and data can be rearranged lazily.

The end goal of this work is to predict future access probabilities based on prior
information to the extent that these access patterns can inform scalable system design.
Once groups exist, we can place them on the same types of physical media, prefetch
elements a group at a time, or even structure reliability schemes to minimize intergroup
availability disruptions. We have tested some of our techniques to address system power
consumption through group-based layout and idle disk spin-down [Wildani and Miller
2010], and we have also had positive results using groups to populate a memory-based
index cache for online deduplication [Wildani et al. 2013].

After reviewing other work in the field, we present our statistical similarity metrics
and partitioning algorithms, along with a discussion of how parameters are selected
and which methodology is best suited to which type of workload. We then present the
working set groupings that each of these partitioning algorithms returns. We finally
discuss the validity of our groupings and conclude with a discussion of the implications
of our groupings and the work we are currently doing to both improve groupings and
characterize workloads based on ability to be grouped into working sets.

2. BACKGROUND AND RELATED WORK

Grouping data for performance gains and other optimizations has a long history. The
original BSD FFS aimed to localize associated data and metadata blocks within the
same cylinder groups to avoid excessive seeks [McKusick and Fabry 1984].

ACM Transactions on Storage, Vol. 12, No. 2, Article 7, Publication date: February 2016.

Statistical Techniques to Identify Predictive Groupings in Storage System Accesses 7:3

Subsequent projects have focused on specific workloads or applications where group-
ing could provide a benefit. The DGRAID project demonstrated that placing seman-
tically related blocks of a file adjacent to each other on a disk reduced the system
impact on failure, since adjacent blocks tend to fail together [Sivathanu et al. 2005].
Localizing the failure to a specific file reduces the number of files that have to be re-
trieved from backups. Our grouping methodology will allow for failures to be localized
to working sets, which represent use cases, allowing more of the system to be usable
in case of failure. Schindler et al. show the potential gain from groupings by defin-
ing track-aligned extents and showing how careful groupings prevent accesses from
crossing these borders [Schindler et al. 2002]. They also demonstrate the prevalence of
sequential full-file access and make a strong case for predicting access patterns across
data objects in environments with small files.

Since most files in a typical mixed workload are still under 3,000 bytes [Tanenbaum
et al. 2006], we believe our technique can be used to help define track-aligned extents.
Our end goal is to tease apart the accesses instigated by separate applications in
order to obtain sets of blocks that are likely to be read or written to together. In one
of our datasets, we find that the read:write ratio is almost 10:90, implying that our
workload is directly comparable to the workload for personal computers with single
disks in Riska’s workload characterization study [Riska and Riedel 2006]. Riska also
suggests the idea of using a protocol analyzer to collect I/O data without impacting
the underlying system, opening block I/O analysis to active HPC systems that cannot
tolerate any performance degradation for tracing.

Arpaci-Dusseau et al. have made a variety of advances in semantically aware disk
systems [Sivathanu et al. 2003; Arpaci-Dusseau et al. 2006]. Their online inference
mechanism had trouble with the asynchronous nature of modern operating systems.
We use a longer history of block associations to uncouple the relationships between
applications, and we are working on implementing their inference techniques as a sec-
ondary classification layer. Their techniques for inode inference and block association
gain a great amount of information by querying the blocks; however, there is an implicit
assumption here that we can identify and parse the metadata. We collect only the bare
minimum of data, which allows our algorithms to work almost domain blind.

Dorimani and Iamnitchi [2008] discuss a need for characterization of HPC workloads
for the purpose of file grouping. They also demonstrate a grouping using static, prela-
beled groups, where the mean group size is about an order of magnitude larger than
the mean file size. Prelabeled groupings such as these are hard to obtain for general
workloads, and they are susceptible to evolving usage patterns and other variation in
workload. By focusing on the core issue of interaccess similarity, we hope to be able
to form dynamic groups from real-time access data. Oly and Reed [2002] present a
Markov model to predict I/O requests in scientific applications. By focusing on scien-
tific applications, their work bypasses the issue of interleaved groups. Yadwadkar et al.
[2010] also use Markov modeling, and they apply their model to NFS traces, doing best
when groups are not interleaved. Their method is more difficult to adapt to online data
than the algorithm we present.

Essary and Amer [2008] provide a strong theoretical framework for power savings by
dynamically grouping blocks nearby on a disk. Other predictive methods have shown
good results by offering the choice of “no prediction,” allowing a predictor to signal un-
certainty in the prediction [Amer et al. 2002]. C-Miner uses frequent sequence matching
on block I/O data, using a global frequent sequence database [Li et al. 2004]. Frequent
sequence matching is susceptible to interlaced working sets within data and thus best
for more specialized workloads, whereas our technique is suitable for multiapplication
systems.

ACM Transactions on Storage, Vol. 12, No. 2, Article 7, Publication date: February 2016.

7:4 A. Wildani and E. L. Miller

2.1. Grouping Versus Caching and Prefetching

Cache prefetching and clustering active disk data exploit the fact that recently accessed
data is more likely to be accessed again in the near future on a typical server [Staelin
and Garcia-Molina 1990]. Unlike several techniques that group data based on popu-
larity or “hotness,” we group data by likelihood of contemporaneous and related access
regardless of the likelihood for the group, or any of its members, to be accessed at
all. We also present partitioning algorithms including graph theoretic techniques that
have not yet been considered for predictive grouping.

Caching can be defined as looking for groupings of data that are likely to be accessed
soon, based on any one of a number of criteria. Caching algorithms can even be adaptive
and cache criteria picked based on what provides that best hit rate [Ari et al. 2002].
The cache criteria can involve file or block grouping [Pinheiro and Bianchini 2004],
but typically only in the context of grouping together popular or hot blocks of the sys-
tem [Wang and Hu 2001]. This is necessary because cache space is precious, so placing
related, but less accessed data into the cache would only serve to pollute it [Zhuang
and Lee 2007]. DULO biases the cache toward elements that have low spatial locality,
increasing program throughput, but is affected by cache pollution issues for data that
is rarely accessed [Jiang et al. 2005].

Our work is strongly based on previous work in cache prefetching techniques that
predict file system actions based on previous events. Kroeger and Long [1996, 2001]
examined using a variant of frequent sequence matching to prefetch files into cache.
Their work provides strong evidence that some workloads (Sprite traces, in this case)
have consistent and exploitable relationships between file accesses. We are targeting a
different problem, though with the same motivations. Instead of deciding what would
be most advantageous to cache, we would like to discover what is most important to
place together on disk so that when the cache comes looking for it, the data has high
physical locality and can be transferred to cache with minimal disk activity. We assume
that our methods will be used alongside a traditional cache because they complement
each other, and it has been shown that both read and write caches amplify the benefits
of grouping [Narayanan et al. 2008].

Minimizing disk activity for disk accesses is especially important on some types of
systems such as MAID where data is distributed around mostly idle disks [Colarelli
and Grunwald 2002]. Diskseen performs prefetching at the level of the disk layout
using a combination of history and sequence matching [Ding et al. 2007]. Pinheiro and
Bianchini [2004] group active data together on disk to minimize the total number of
disk spin-ups, but they are vulnerable to workloads where several blocks are typically
accessed together but accessed infrequently. In a large system for long-term storage, the
effect of these infrequent accesses can accumulate to be a large drain on power [Wildani
and Miller 2010]. Recent studies have investigated using temporal locality [Lo et al.
2014] or spatial locality [Wu and He 2012] to more intelligently manage the flash
translation in solid-state devices. The grouping methodologies we discuss have been
tested for a variety of use cases including selectively prefetching fingerprints into a
cache [Wildani et al. 2013], which may be a useful starting point for a generalized flash
grouping technique.

2.2. Statistical Grouping Versus Categorical Grouping

Departing from previous work, we pay more attention to statistical grouping over cat-
egorical. Recent studies indicate that categorical grouping does not have the flexibility
necessary for modern, shifting workloads [Wildani et al. 2014]. One silver lining of the
massive amounts of data that modern systems create is that it is easier to train statis-
tical learning systems on systems with high IOPS, since we have more data to support

ACM Transactions on Storage, Vol. 12, No. 2, Article 7, Publication date: February 2016.

Statistical Techniques to Identify Predictive Groupings in Storage System Accesses 7:5

or contradict any prior calculations. Thus, we revisit the problem of statistical grouping
and have found that on several workloads, statistical grouping tracks real-world usage
patterns without adding excessive computational overhead.

Categorical grouping by definition requires some functional knowledge of the data
that relies on human curation, either in manual labeling or metadata upkeep [Adams
et al. 2012]. Example categorical attributes include size, name, type, owner, path,
or even whole file content. Both metadata and domain knowledge require upkeep
by a local expert in the system workload. Over time, the logging methodology can
change, leading to inconsistent interpretations for metadata fields [Adams et al. 2012].
Also, if administrators leave, their terminology and understanding of the system must
be accurately transferred to their successor. Finally, the most important flaw with
categorical, rich metadata systems is that usage patterns, especially in multiuser,
multipurpose storage systems, are constantly shifting. This makes it almost impossible
to develop a generalizable technique to derive groups that have long-term predictive
capability based on categorical data.

2.3. Grouping Versus Clustering

Clustering refers to a class of unsupervised learning techniques that group n-
dimensional heterogeneous data. Many techniques rely on a known or predictable
underlying distribution in the dataset or a derivable number of clusters. Additionally,
many clustering methods need to perform expensive computation to add points. We
have found that popular methods such as k-means give undue weight to very large
groups and ignore smaller or partially overlapping clusters. This is especially unfortu-
nate as we believe the actual grouping underlying all of the datasets we have observed
thus far is strongly biased toward small clusters, and small clusters are better for
applications such as pulling data into cache. These properties make many clustering
algorithms unsuitable for real-time grouping selection.

One class of clustering algorithms that shows promise are agglomerative. In ag-
glomerative clusterings, every element starts as its own cluster and the clusters are
then merged until the algorithm converges. iClust is a particularly strong candidate:
it does not require an a priori similarity metric or underlying distribution, it is invari-
ant to changes in the representation of the data, and it naturally captures nonlinear
relations [Slonim et al. 2005]. iClust has been used mainly in biology applications to
cluster genes by expression data such that members of a cluster have high codepen-
dency [Zaman et al. 2009]. Though we did not use iClust to calculate the groupings for
our applications because it is still much slower than NNP (Section 3.2.2), we believe
that for a large, static system it would outperform bag-of-edges on more volatile data.

3. DESIGN

Grouping data is the necessary first step before we can explore colocation for power
savings, fault isolation, avoiding track boundaries [Schindler et al. 2002], implementing
SLAs, or doing intelligent data distribution in heterogeneous storage systems. The end
goal of any grouping is to be able to predict future data usage, whether accesses or
dependencies.

Modern storage systems are shifting from individual, low IOPS deployments to large
shared storage servers such as Amazon’s S3 that are under constant load. The preva-
lence of these systems is growing with the popularity of the cloud, as storage man-
agement is consolidated and heterogeneous data such as stables of virtual machine
images, for instance, are stored together on a storage system accessed by disparate
nodes [Constantinescu et al. 2011]. In some systems, such as systems designed for high-
performance computing, collecting rich metadata from storage accesses introduces an
unacceptable amount of overhead in the form of additional disk operations. In others,

ACM Transactions on Storage, Vol. 12, No. 2, Article 7, Publication date: February 2016.

7:6 A. Wildani and E. L. Miller

groups need to be calculated in real time to provide benefits such as cache prefetching,
so any grouping must be fast to obtain and process—ideally low dimensional. Both of
these purposes are served by grouping using raw I/O traces at the block, file, or object
level. On a real system, it is frequently impractical for security or performance reasons
to put in hooks to collect even file-level access data. The classification into groups is
then just based on spatiotemporal distance, as defined by the particular environment.

Our statistical techniques are designed to create groups quickly to adapt to changing
conditions, using dynamically updated likelihood values and periodic regrouping based
on performance, all while requiring a minimal amount of overhead. The tradeoff is
that we will not be able to reach the same level of predictive accuracy that a domain-
specified grouping can get in its best case, where, for example, it is known exactly what
the working sets will be. However, we have found that in most cases, the adaptability
of statistical grouping provides better long-term predictive capability to the groupings
compared to static domain-based groupings, which mirrors earlier results that show
that dynamic grouping has a lower overhead and higher value [Coffman and Ryan
1972].

Another reason we found that this was a better way to do trace-based prediction is
privacy concerns, where organizations do not want to release data that could identify
the users or applications that created a trace. We have found that obtaining data to do
predictive analysis is easier if one can make a clear argument that sharing data will
not create any privacy concerns for the source organization. After well-documented
cases of failed or insufficient data anonymization, such as the infamous AOL data
leak [Barbaro and Jr. 2006], companies are very aggressively defending internal privacy
to the detriment of well-meaning researchers. This concern is part of the reason much
modern research in predictive grouping uses data that is 5 to 10 years out of date, if
they use real data at all [Adams et al. 2012].

The statistical grouping techniques we have researched all use data that can be col-
lected nonintrusively from a running system with minimal modification. For example,
much of our work uses block I/O traces, which can be obtained by attaching a pro-
tocol analyzer to the disk bus to watch the low-level communication to the disks and
reconstruct a block I/O trace from these patterns. In addition to alleviating privacy con-
cerns, this type of data is straightforward to collect without impacting the performance
of high-performance systems. This technique has been successfully used to collect block
I/O traces at Seagate [Riska and Riedel 2006].

3.1. Calculation

Our statistical classification scheme has two components: the distance metric used for
determining distance between data points and the partitioning algorithm that identi-
fies working sets based on these distances. We offer three different partitioning algo-
rithms and explain how each could fit a particular type of workload and environment.

Statistical grouping requires data with at least two dimensions: time and something
that can serve as an identifier as well as provide additional locality. The additional
locality has the benefit of keeping our groupings resistant to noisy changes: for example,
if a block offset is used as a UID, we can incorporate the bias in initial placement
that offset indicates. Finally, this method of characterization could expose previously
undetected high-level activities such as undeclared application dependencies or sudden
behavior changes implying a security event.

For block I/O traces, we treat the block offset as a unique identifier for a location on
the physical disk. We found that even though this offset can refer to different data over
time (Figure 1), there is enough information in the offset to provide predictivity. This
could in part be because the usage of data can remain similar even when parts of a file
are overwritten.

ACM Transactions on Storage, Vol. 12, No. 2, Article 7, Publication date: February 2016.

Statistical Techniques to Identify Predictive Groupings in Storage System Accesses 7:7

Fig. 1. An example of offset-data mismatches over time for a university (fiu) and an enterprise (ent-storage)
dataset. Logical block addresses are used in place of physical offsets, and each LBA corresponds to a data
fingerprint. In the enterprise dataset, ent-storage, labels remain consistent for many accesses before the
percentage changed creeps up, while in the research university dataset represented by fiu, the mapping was
more volatile. We recalculated groupings after about 250,000 accesses because predictivity was dropping,
partly due to the mismatch. Surprisingly, the fiu workload ended up with more predictive groups than the
ent-storage workload.

The uniqueness assumption for block offsets generally holds for application files and
other static filesystem components, though it will break down for volatile areas such
as caches or log structured file systems. As we see in Figure 1, the spatial dimension
may map well to the data for some time. Making this assumption allows us to use
very sparse data for our analysis, since spatiotemporal data is ubiquitous in dynamic
traces and, when the spatial component can be treated as a unique ID, it can be used
to classify data.

To compare accesses in these dimensions, we need to define an effective distance met-
ric over time and space that has few parameters and is fast to compute. Though there
are many possible choices, we have focused on variants of Euclidean distance so far for
simplicity and generalizability. With more dimensions, we have a wide array of statisti-
cal similarity metrics available such as the Sørensen similarity index [Sørenson 1948],
which biases against outliers, and Tanimoto Distance [Jaccard 1901], which provides
a set comparison that is optimized for grouping seemingly dissimilar sets [Magurran
2004].

Distance
Our partitioning algorithms depend on a precalculated list of distances between ev-
ery pair of points, where points each represent single accesses and are of the form
〈time, offset〉. We experimented with using points of the form 〈time, (offset, size)〉, but
we found this decreased the signal-to-noise ratio of our data considerably. We believe
this is a result of controller- and OS-level prefetching techniques that decorrelate the
size parameter from the working set. In a dataset with more fixed size accesses, using
(offset, size) should result in a tighter classification.

In production, our system is designed to look at trace data in real time. This intro-
duces an inherent bias toward accesses that are close in time versus accesses close
in space, since accesses close in time are continuously coming in while accesses close
in space are distributed across the scope of the trace. Intuitively, this is acceptable

ACM Transactions on Storage, Vol. 12, No. 2, Article 7, Publication date: February 2016.

7:8 A. Wildani and E. L. Miller

because the question we are trying to answer is “Are these blocks related in how they
are accessed?,” which implies that we care more about 10 datapoints scattered through-
out the system that are accessed, repeatedly, within a second of each other than we do
about 10 datapoints that are adjacent on disk but accessed at random times over the
course of our trace. For most of our grouping methods, we use a precalculated list of
distances between every pair of points.

We create two different types of distance lists. The first is a simple n × n matrix
that represents the distance between every pair of accesses (pi, pj), with d(pi, pi) = 0.
We calculate the distances in this matrix using simple weighted Euclidean distance,
defined as d(pi, pj) = d(pj, pi) = √

(ti − tj)2 + oscale ∗ (oi − o j)2, where a point pi =
(ti, oi) and the variables are t =time and o = the unique ID dimension, and oscale is
an IOPS-dependent weighting factor on the UID. As IOPS increases, the information
in the current location of blocks decreases (Figure 1 shows the loss of information over
time for ent-storage, a high IOPS workload, vs. fiu, a low IOPS workload), so a lower
value of oscale should be used.

Figure 3 shows average group sizes across the entire parameter space for a partic-
ular n-neighborhood partitioning grouping (Section 3.2.2). It shows that for a given
workload, only a small range of oscale values produce a nontrivial grouping. For the
datasets we tested, only large variations of oscale produced appreciable changes in the
resultant groupings, implying that oscale is relatively stable.

In this global comparison of accesses, we were most interested in recurring block
offset pairs that were accessed in short succession. As a result, we also calculated an
m × m matrix, where m is the number of unique block offsets in our dataset. This
matrix was calculated by identifying all the differences in timestamps T = [T1 =
ti1 − tj1, T2 = ti1 − tj2, T3 = ti2 − tj1, . . .] between the two offsets oi and o j . Note that
this is more complex than a straightforward Hamming distance because offsets occur
multiple times within a trace window. After some experimentation, we decided to treat
the unweighted average of these timestamp distances as the time element in our
distance calculation. Thus, the distance between two offsets is

d(oi, o j) =

√√√√(∑|T |
i=1 Ti

|T |

)2

+ oscale ∗ (oi − o j)2.

Ranged and Leveled Distance Lists
Calculating the full matrix of distances is computationally prohibitive with very large
traces and impossible in an online system. We need to handle real-time data where
relationships within the data are likely to have to have a set lifetime, so we also looked
into creating lists of distances between the most relevant pairs of offsets. To do this, we
again bias toward offsets that are close in time. For very dense workloads, we suggest
choosing a range r in time around each point and calculating the distances from that
point to all of the accesses that fall in range, averaging the timestamps for accesses
that occur with the same offset, as in the previous section. For real-time traces, the
range has to be large enough to capture repeated accesses to each central point to
reduce noise. Section 3.2.2 discusses one scalability approach we successfully used to
handle traces with over 300,000 IOPS.

For static trace analysis, where groups do not need to be calculated quickly, we have
the ability to paint a more complete picture of how a given offset is related to other
offsets. Instead of calculating ranges around each point, we calculate ranges around
each instance of a given offset oi. We do this by calculating the distance list around
each of N instances of the offset, rDist(oi1) = [(o j, d(oi1, o j)), (o j+1, d(oi1, o j+1), . . .]. We
then take the list that each instance returns and combine them. This gives us a better

ACM Transactions on Storage, Vol. 12, No. 2, Article 7, Publication date: February 2016.

Statistical Techniques to Identify Predictive Groupings in Storage System Accesses 7:9

understanding of trends in our trace and strength of association. If an offset oi appears
next to o j multiple times, we have more reason to believe they are related. To combine
the list, we first create a new list of the offsets that only appear in one of our lists—
these being elements that do not need to be combined. For the remaining elements, we
take the sum inversely weighted by the time between their occurrences. For example,
say we have an offset o that is accessed twice in our trace, at times t1 and t2, with
distance lists: [(o, oi, d(o, oi)1), (o, o j, d(o, o j)1] and [(o, oi, d(o, oi)2), (o, om, d(o, om)2]. The
combined distance list would then be

[(o, oi, d(o, oi)1 + d(o, oi)2

|t1 − t2| , (o, o j, d(o, o j)1, (o, om, d(o, om)2)].

This heavily weights offset pairs that occur near to each other, which results in dynamic
groupings as these relationships change. Switching the inversely weighted sum to an
inversely weighted average smoothes this effect but results in groups that are less
consistent across groupings.

If accesses are sparse, we set the range in terms of levels instead of temporal distance.
A level is defined as the closest two points preceding and succeeding a given access in
time. A k-level distance list around a point pi is then the distance list comparing pi to
the k accesses that occurred beforehand and the k accesses that occurred afterward. In
sparse, static traces, we use these levels to manage the tradeoff between computational
power and accuracy. Therefore, our work sets a minimum k as the median group size
and increases this value based on computational availability. The distance lists are
calculated the same way as they are for a set range.

3.2. Statistical Partitioning Algorithms

The goal of all of the group partitioning algorithms we work with is to identify groups
that have a high probability of coaccess within a small amount of time. These groups
could correspond to individual working sets in the data but are equally likely to arise
from system-wide trends.

We are particularly interested in untangling groups that are interleaved in the disk
access stream. Large, long-term storage systems that grow organically also develop
heavily interleaved access patterns as more use cases are added to the system. Our
distance calculations return a definitive answer for the question “How far is offset a
from offset b?” With this similarity information precomputed, we now look at the actual
grouping of accesses into working sets.

3.2.1. Neighborhood Partitioning/N-Neighborhood Partitioning. Neighborhood partitioning
(NP) is an online, agglomerative technique for picking groups in multidimensional
data with a defined distance metric. It is the best technique for data with more than
two dimensions: distances are calculated over all dimensions and then the grouping
itself runs linearly in the number of points. N-Neighborhood Partitioning (NNP) is a
variation that improves scalability for dynamic grouping by dividing the stream into
overlapping windows and combining resultant groupings. We do not use ranged or
leveled distance lists with this method to limit computational overhead.

The partitioning steps for NP are as follows:

(1) Collect data.
(2) Calculate the pairwise distance matrix.
(3) Calculate the neighborhood threshold and sequentially detect groups in the I/O

stream.
(4) Update likelihood values based on group reappearance.
(5) Drop groups below a likelihood threshold.

ACM Transactions on Storage, Vol. 12, No. 2, Article 7, Publication date: February 2016.

7:10 A. Wildani and E. L. Miller

Fig. 2. Each incoming access is compared to the preceding access to determine whether it falls within the
neighborhood (Ň) to be in the same group. If it does not, a new group is formed with the incoming access.

In this technique, we start with a set of accesses ordered by timestamp. We first
calculate a value for the neighborhood threshold, Ň. In the online case, Ň must be
selected a priori from a small set of training data and then recalculated once enough
data has entered the system to smooth out any cyclic spikes. The amount of data you
need depends on what is considered a normal span of activity for the workload. In the
static case, Ň is global and calculated as a weighting parameter times the standard
deviation of the accesses, assuming the accesses are uniformly distributed over time.
Once the threshold is calculated, the algorithm looks at every access in turn. The first
access starts as a member of group g1. If the next access occurs within Ň, the next
access is placed into group g1; otherwise, it is placed into a new group g2, and so on.
Figure 2 illustrates a simple case.

Neighborhood partitioning is especially well suited to rapidly changing usage pat-
terns because it operates on accesses instead of offsets. When an offset occurs again in
the trace, it is evaluated again, with no memory of the previous occurrence. This is also
the largest disadvantage of this technique: most of the valuable information in block
I/O traces lies in repeated correlations between accesses. The groups that result from
neighborhood partitioning are by design myopic and will miss any trend data.

For our write-heavy, research dataset, we found that neighborhood partitioning was
very susceptible to small fluctuations of its initial parameters and to the spike of writes
in our workload. The modifications made to neighborhood partitioning to handle the
high IOPs dataset (Section 3.2.2) fixes many of these issues to produce a consistent
grouping across more parameter values.

Neighborhood partitioning runs in O(n), where n is the size of the neighborhood, since
it only needs to pass through each neighborhood twice: once to calculate the neighbor-
hood threshold and again to collect the working sets. Once these passes are made, the
cumulative symmetric difference can be calculated in O(G), where G is the number of
groups [Li 2008]. In our tests, we observed G � n, and so drop the term. Intuitively, this
runtime makes sense because there is no n×n comparison step in NP; it is simply a lin-
ear agglomerator in a constrained window. This makes it an attractive grouping mech-
anism for workloads with high IOPS (e.g., the enterprise system we worked with can

ACM Transactions on Storage, Vol. 12, No. 2, Article 7, Publication date: February 2016.

Statistical Techniques to Identify Predictive Groupings in Storage System Accesses 7:11

Fig. 3. Parameter selection for the Washington dataset with Neighborhood Partitioning. Color indicates the
average group size produced by the specified parameters. Most parameter combinations result in grouping
with the same average group size: a bit over 3. All of the datasets we tested showed similar very distinct
clusters of group sizes under a parameter search.

support 300,000 IOPS, though we saw far fewer in our trace), where a full O(n2) com-
parison is prohibitive. Additionally, we can capture groups in real time and quickly take
advantage of correlations. We also can easily influence the average group size by weight-
ing the threshold value. As we see in Figure 3, we can weight our grouping parameters
to bias NP toward smaller or larger groups depending on the grouping application re-
quirements. While larger groups improve prediction immediately after groupings are
calculated, over time larger groups need more recalculation to prevent false negatives
as the workload shifts, potentially negating their short-term predictive benefit.

3.2.2. Grouping Scalably: N-Neighborhood Partitioning. Though neighborhood partitioning
is very efficient and has some ability to detect interleaved groupings, it does not scale
well. To support arbitrarily large amounts of data, we introduce N-Neighborhood Parti-
tioning (NNP), which merges several groupings from different windows of neighborhood
partitioning without the memory overhead of a single large partitioning. By aggregat-
ing incoming accesses into regions of fixed size, NNP is highly scalable and able to
perform in real time even in systems with high IOPS. The size of regions is determined
by the memory capabilities of the system calculating the working sets, though increas-
ing the size of the region quickly meets diminishing returns [Wildani et al. 2011]. The
regions in our implementation also overlap by a small number of accesses to account
for groups that straddle the arbitrary breakpoints in our region selection. The choice
of overlap is based on desired group size and is independent of the data.

The first step is to select a window size, w. The window size is the amount of data
that is used to create a single grouping. In high IOPS workloads, we use several
of these windows to classify based on local requirements. For example, in an online
deduplication scenario, we selected w = 250MB because of local memory constraints
when populating the cache. NNP requires up to w2 of memory to store a pairwise
distance matrix between elements in the window. However, this matrix is typically

ACM Transactions on Storage, Vol. 12, No. 2, Article 7, Publication date: February 2016.

7:12 A. Wildani and E. L. Miller

sparse since, below a threshold, we set similarity to 0, and moreover it is only updated
when the predictivity of the overall grouping falls below a threshold. Sparsity is related
to the access density of the workload; in the workloads we used, rows rarely had
more than a few thousand elements even though we had tens of thousands of unique
data blocks. The windows overlap by twice the current average group size to limit
overcounting.

For NNP, for each window, the partitioning steps are as follows:

(1) Collect data.
(2) Perform neighborhood partitioning.
(3) Combine the new grouping with any prior groupings.
(4) Adjust likelihood of current groups.

As accesses enter the system, they are divided into regions and a grouping is calcu-
lated for each region using neighborhood partitioning. A grouping Gi is a set of groups
g1, . . . , gl that were calculated from the ith region of accesses. Each group gi has mem-
bers xi1, xi2, . . . , xin. Unlike NP, NNP is not memoryless; older groupings are combined
with newer to form an aggregate grouping that is representative of trends over a longer
period of time.

We combine groupings through fuzzy set intersection between groupings and sym-
metric difference between groups within the groupings. So, for groupings

G1, G2, . . . Gz, the total grouping G is

G = (Gi ∩ Gj) ∪ (Gi�gGj) ∀i, j 1 ≤ i, j ≤ z,

where �g, the groupwise symmetric difference, is defined as every group that is not
in Gi ∩ Gj and also shares no members with a group in Gi ∩ Gj . For example, for
two group lists G1 = [(x1, x4, x7), (x1, x5), (x8, x7)] and G2 = [(x1, x3, x7), (x1, x5), (x2, x9)],
the resulting grouping would be G1 ∩ G2 = (x1, x5) ∪ G1 �g G2 = (x2, x9), yielding a
grouping of [(x1, x5), (x2, x9)]. (x1, x4, x7), (x1, x3, x7), and (x8, x7) were excluded because
they share some members but not all.

NNP is especially well suited to rapidly changing usage patterns because individual
regions do not share information until the group combination stage. Combining the
regions into a single grouping helps mitigate the disadvantage of losing the information
of repeated correlations between accesses without additional bias. The groups that
result from NNP are by design myopic and will ignore long-term trend data, reducing
the impact of spatial locality shifts over time.

3.2.3. Nearest Neighbor Search. k-nearest-neighbor (k-NN) is based on a standard
machine-learning technique that relies on the identification of neighborhoods where
the probability of group similarity is highest [Duda et al. 2001]. In the canonical case, a
new element is compared to a large set of previously labeled examples using a distance
metric defined over all elements. The new element is then classified into the largest
group that falls within the prescribed neighborhood. This is in contrast to neighborhood
partitioning, where everything within a neighborhood is in the same group.

For this work, we modified the basic k-NN algorithm to be unsupervised since there
is no ground-truth labeling possible for groups. We also incorporated weights. The
goal of weighting is to lessen the impact of access to offsets that occur frequently and
independently of other accesses. In particular, in the absence of weights, it is likely that
a workload with an on-disk cache would return a single group, where every element
has been classified into the cache group, which is a group of size 44,000 that was
consistently identified by both the k-NN and bag-of-edges algorithms. Similar effects
occur with a background process doing periodic disk accesses.

ACM Transactions on Storage, Vol. 12, No. 2, Article 7, Publication date: February 2016.

Statistical Techniques to Identify Predictive Groupings in Storage System Accesses 7:13

Fig. 4. A clique cover of a graph of accesses. Nodes represent accesses, while edges represent at least a
threshold level of similarity between edges.

In our algorithm, we start with an m× m distance matrix as defined in Section 3.1,
where m is the number of unique block offset values. We chose k by taking the average
distance between offsets in our dataset and multiplying it by a weighting factor. For the
first offset, we label all of the offsets within k of that offset into a group. For subsequent
offsets, we scan the elements within k of our offset and place our offset in the best-
represented group. The value of k is the most important parameter in our weighted
k-NN algorithm. If the workload consists of cleanly separable groups, it should be easier
to see groupings with smaller values of k. On the other hand, a small value of k can
place too much weight on accesses that turn out to be noise. Noisy workloads reduce
the accuracy of k-NN because with a large k, the groups frequently end up too large to
be useful. We found that as long as we start above the average distance, the weighting
factor on k did not have a large influence until it got to be large enough to cover most
of the dataset.

3.2.4. Graph Covering. The final method we used begins with representing accesses as
nodes in a graph and edges as the distance between nodes. Presenting this information
as a graph exposes the interrelationships between data but can result in a thick tangle
of edges. A large, fully connected graph is of little use, so we determined a threshold
of similarity beyond which the nodes no longer qualify as connected. This simplifies
our graph and lowers our runtime, but more importantly, removing obviously weak
connections allows us to identify groups based on the edges that remain connected.
This does not impact classification since these edges connect nodes that by definition
bear little similarity to each other. Once we have this graph, we define a group as all
sets of nodes such that every node in the set has an edge to every other node in the set;
this is defined as a clique in graph theory. Figure 4 shows an example clique covering
of an access graph. Note that every element is a member of a single working set that
corresponds to the largest of the potential cliques it is a member of. The problem then
of finding all such sets reduces to the problem of clique cover, which is known to be
NP-complete and difficult to approximate in the general case [Cormen et al. 1990]. This
is in direct contrast to nearest neighbor search, which is O(n2 log(n)).

Though clique cover is difficult to approximate, it is much faster to compute in
workloads with many small groups and relatively few larger groups. We begin by
taking all the pairs in a k-level distance list and comparing them against the larger
dataset to find all groups of size 3. This is by far the most time-intensive step, running
in O(n2). We then proceed to compare groups of size 3 for overlap, and then groups
of size 4, and so forth, taking advantage of the fact that a fully connected graph Kn
is composed of two graphs Kn − 1 plus a connecting edge to reduce our search space
significantly. As a result, even though the worst case for our algorithm is O(n|Gx |) (in

ACM Transactions on Storage, Vol. 12, No. 2, Article 7, Publication date: February 2016.

7:14 A. Wildani and E. L. Miller

addition to the distance list calculation), where n is the number of nodes and |Gx| the
size of the maximal group, our expected runtime is

∑x
2 |Gi|i, where |Gi| is the number

of groups of size i. We observe in Figure 6 that the average group size tends to be small,
and our runtime results in Section 5.3 show that this holds in real traces.

We discovered that in typical workloads, this method is too strict to discover most
groups. This is likely because the accesses within a working set are the result of an
ordered process. This implies that while the accesses will likely occur within a given
range, the first and last access in the set may look unrelated without the context of the
remainder of the set and thus lack an edge connecting them. We fix this by returning
to an implicit assumption from the neighborhood partitioning algorithm that grouping
is largely transitive. This makes intuitive sense because of the sequential nature of
many patterns of accesses, such as those from an application that processes a directory
of files in order.

In our transitive model, we use a more restrictive threshold to offset the tendency
for intermittent noise points to group together otherwise disparate groups of points.
We then calculate the minimum spanning tree of this graph and look for the longest
path. We have to calculate the minimum spanning tree because longest path is NP-
complete in the general case but reduces to the much simpler negated shortest path
when working with a tree. This process runs in O(n2 log(n)), since the graph contains
at most e = n(n−1)

2 edges and Dijkstra’s shortest path algorithm runs in O(n + e) before
optimization [Cormen et al. 1990]. We refer to this technique as the bag-of-edges algo-
rithm because it is similar to picking up an edge and shaking it to see what strands are
longest. Bag-of-edges is much less computationally expensive than a complete graph
covering and is additionally more representative of the sequential nature of many ap-
plication disk accesses than our previous graph algorithm. We found that in our small,
mixed-application workload, this technique offered the best combination of accuracy
and performance, but this grouping algorithm was much too slow for dynamic grouping
of high IOPS workloads.

3.3. Group Likelihood and Predictivity

Group recalculation for all of the algorithms in the previous section happens in the
background during periods of low activity. As accesses come in, however, we need to also
proactively update groups to reflect a changing reality. We do this by storing a likelihood
value for every group. This numerical value starts as the median intergroup distance
value and is incremented when the grouping is pulled into cache and successfully
predicts a future access. Groups below a certain likelihood threshold can be discarded,
though we only do this when there is an external limit on the number of groups (such as
when the group table is being stored in memory) since these groups tend to be dropped
during the periodic background regrouping. The algorithm is structured to reinforce
prior good behavior.

Another point where a likelihood value is necessary is when an element is a member
of multiple groups. Grouping is neither 1 − 1 nor onto, and it is unsurprising that
one element can be in several groups. Figure 5 shows replicated elements in two
statistical groupings. In both, we see that most elements are members of relatively
few (<10) groups. Depending on the application, elements can be indexed as members
of several groups, just stored once with their most likely group, or even replicated
per group instance. The elements in the long tail that belong to many groups are
another indicator of the quality of the grouping method for the particular workload:
more ultra-popular elements—elements that fall outside two standard deviations of
the mean replica count—indicate that the grouping is overclassifying elements instead
of labeling them as “noise.”

ACM Transactions on Storage, Vol. 12, No. 2, Article 7, Publication date: February 2016.

Statistical Techniques to Identify Predictive Groupings in Storage System Accesses 7:15

Fig. 5. Replicated elements for two statistical groupings.

Managing likelihood and multiple replicas of group elements is handled by applica-
tion domain. For instance, in NNP, if an access appears in multiple groups, only the
group with the highest likelihood is returned. Likelihood is typically inversely corre-
lated with group size, as we see in Figure 6. This serves to bias NNP toward small
groupings, which we have found to have a higher average likelihood. This is expected
because with fewer group members, there is less chance of a group member being only
loosely correlated with the remainder of the group, bringing the entire group likelihood
down.

Working sets arise organically from how users and applications interact with the
data. Consequently, there is no “correct” labeling of accesses to compare our results to.
Instead, we initially focused on self-consistency and stability under parameter varia-
tion. The working sets found by using the bag-of-edges technique or k-NN are relatively
stable under parameter variation as long as the search space for determining distance
between access points remains fixed. We expect there to be variation here as a result
of natural usage shifts or cyclic usage patterns. We have obtained a limited number
of datasets that contain extra parameters such as initiator ID and process ID that

ACM Transactions on Storage, Vol. 12, No. 2, Article 7, Publication date: February 2016.

7:16 A. Wildani and E. L. Miller

Fig. 6. In both NNP and k-NN, the most likely groupings tended to be smaller across all of our datasets. These
graphs represent a subsample of 10% of groups per grouping, randomly selected. Likelihood is normalized
within each grouping. These graphs show how even a small difference in average group size has a great
impact on the grouping quality.

corroborate statistically derived groupings. Using this data, we verified that stable
groups in these datasets are also products of the same process or initiator more than
90% of the time (Section 5.5).

We expect groups to be interleaved, so we cannot just check for the same groups to
occur in many traces. Instead, we use the Rand index [Rand 1971], a method to compare
clusterings based on the Rand criterion. The Rand index is a good comparator for
groupings because it is essentially a pairwise similarity comparison across groupings,
meaning that it does not penalize groups for the types of small changes that we expect to
see in our groupings from expected usage shift and lack of complete data. For example,
if a group of four elements adds in a fifth member during the testing trace, the group
is still considered to be a correct grouping. The Rand index between groupings G1 and
G2 is calculated as

R(G1, G2) = a + b(n
2

) , 0 ≤ R ≤ 1,

ACM Transactions on Storage, Vol. 12, No. 2, Article 7, Publication date: February 2016.

Statistical Techniques to Identify Predictive Groupings in Storage System Accesses 7:17

Fig. 7. Predictivity over time for NNP groups from the ent-storage dataset.

Table I. Comparative Overview of Datasets

Name Size Type Year R/W # Accesses % Unique Accesses Avg. IOPS Max. IOPS Length
msr 75MB Block 2007 9/91 433655 3.26% 6.53 3925 7 days
xiv 2.8GB Block 2010 * 2161328 44.82% 75997 342142 3 days
fiu 5.9GB Block 2010 4/96 17836701 9.44% 40.49 20104 21 days

wash 436MB File 2007-10 100/0 5346868 39.70% 0.085 114 945 days

where a is the number of pairs present in both G1 and G2, b is the number of pairs
present in G1 but not in G2, and n is the total number of possible elements in any
grouping.

Depending on the expected use of grouped data, the best test will be to run a large
enough dataset and track how often the grouping provided a good result on new data.
At that point, the grouping can even be quickly modified in place based on how often
the grouping does or does not improve the desired performance in terms of disk spins,
cache hits, or other measures that provide observable benefits.

On larger datasets, we can do actual verification on the predictive power of our
grouping selections. Figure 7 shows the predictive power of a grouping for an enterprise
dataset. We see that the predictive capability decreases after a certain point but is fixed
by regrouping based on recent accesses. The frequency of regrouping depends on both
the dynamism of the workload and the tolerances of the system. A system with little
data ingress that has a very stable workload will not experience the loss in predictivity
we see in Figure 7, whereas a system that is highly dynamic will see group predictivity
fall quickly. At that point, the choice of when to regroup is determined by system usage.
For example, the system could be set to regroup when predictivity falls below 10% but
also regroup no more than once every 10,000 accesses. In our sample traces, we ended
up regrouping about once every 100,000 accesses or not at all. Our Python prototype
could typically regroup data in under a minute (see Table VI).

4. EXPERIMENTS

We tested our grouping methodologies and applications on a variety of datasets aimed
at representing several classes of workloads. Much access data available to the research
community is over 5 or even 10 years old, and thus does not accurately represent

ACM Transactions on Storage, Vol. 12, No. 2, Article 7, Publication date: February 2016.

7:18 A. Wildani and E. L. Miller

how systems are being used in our cloud and always-connected world. To ensure that
our results are applicable to real workloads, we focused on getting access traces that
were collected recently—within the last decade—and that cover a variety of different
workload types.

To analyze grouping, ideally one has the ability to gather complete block-level logs for
a system with many users and many applications over a period of time commensurate
to the dynamicity of a trace. Additionally, this trace would be collected before any file-
system- and hardware-specific biases (e.g., write off-loading, sequential access removal)
are introduced. Finally, having metadata or content ID to verify that elements that are
selected to be in the same group have some semantic correlation is useful for group
validation.

Finding traces with all of these attributes is difficult for researchers because of the
privacy implications of rich metadata and the tracing overhead that collecting large
amounts of data on an active systems incurs. The datasets we use in this thesis are
selected to provide as much breadth of workload type given what we had available.

Our first dataset, msr, which we use for all of the algorithms we outline in this
article, represents 1 week of block I/O traces from multipurpose enterprise servers
used by researchers at Microsoft Research (MSR), Cambridge [Narayanan et al. 2008].
We chose these traces for two reasons: First, they allow us to simulate the bare-bones
block-timestamp trace we can collect from a protocol analyzer. Second, these traces
were collected in 2007, making them more recent than most other publicly available
block I/O traces. The offsets accessed in our data, which is from a single disk, were
spaced between 581632 and 18136895488.

This dataset was very write heavy with a read/write ratio of 10:90. This ratio is
almost entirely attributable to a small set of offsets that are likely to represent an
on-disk cache, which is an anecdotally known feature of NTFS [Metz 2012]. Figure 8
shows the accesses by block over time, and Figure 8(b) highlights the read activity.
Removing the writes (Figure 8(b)) shows some dense areas possibly corresponding
to data groups. Despite the cache spike, the accesses in our data are approximately
uniformly distributed across offsets.

Our second trace, fiu, is from Florida International University (FIU) and traces
researchers’ local storage [Koller and Rangaswami 2010]. This is a multiuser, multi-
application trace, with activities including developing, testing, experiments, technical
writing, and plotting. The traces were collected in 2010 from systems running Linux
with the ext3 file system. The fiu trace is our most diverse trace in terms of known ap-
plications. It also had the additional benefits of having content hashes for deduplication
analysis and process information that we used to validate groupings.

To obtain a large corpus, we merge a collection of daily traces from FIU. Since
the traces contain process information, we can use the data to externally verify the
classifications we make by showing that data within a group was last accessed by the
same process. Size is in units of 512-byte blocks, and the MD5 is calculated per 4,096
bytes. We use LBA as the spatial component of the calculation. As of 2014, this data is
publicly available at http://sylab.cs.fiu.edu/doku.php?id=projects:iodedup:start.

This dataset was also surprisingly write heavy, likely due to small system writes
replicated per user (we obviously cannot know the actual cause). Over 33% of accesses
were to duplicate blocks, determined by the MD5 hashes. Our other block-based trace,
ent-storage, is from researcher home directories at IBM T.J. Watson Laboratories.
The directories are housed on an IBM XIV, an 80TB self-contained storage system
that provides many features including mirroring, read look-ahead, and 7TB of SSD
cache [Dufrasne et al. 2012]. The directories are stored under GPFS [Schmuck and
Haskin 2002] and are used by over 100 researchers.

ACM Transactions on Storage, Vol. 12, No. 2, Article 7, Publication date: February 2016.

http://sylab.cs.fiu.edu/doku.php?id$=$projects:iodedup:start

Statistical Techniques to Identify Predictive Groupings in Storage System Accesses 7:19

Fig. 8. These 2D histograms show the spatiotemporal layout of block accesses across the msr trace with
and without writes. Darker bins correspond to higher access density.

The XIV is split into multiple volumes, but LBAs are consistent across volumes and
so still usable as a spatial reference. An additional issue with this trace is that the
trace is postadaptive lookahead. This means that sequential accesses are effectively
removed from the trace by the system itself. This dataset is not publicly available.

Our file-archive dataset is a database of vital records from the Washington state
digital archives, where records are labeled with one of many type identifiers (e.g.,
“Birth Records,” “Marriage Records”) [Adams et al. 2012]. We examined 5,321,692

ACM Transactions on Storage, Vol. 12, No. 2, Article 7, Publication date: February 2016.

7:20 A. Wildani and E. L. Miller

Table II. Sample Data from MSR Cambridge Research Machines

Timestamp Type Block Offset Size Response Time
128166372003061629 Read 7014609920 24576 41286
128166372016382155 Write 1317441536 8192 1963
128166372026382245 Write 2436440064 4096 1835

Table III. Sample Data from Florida International University Research Machines

Timestamp PID Process LBA Size R/W Maj. Device # Min. Device # MD5
0 4892 syslogd 904265560 8 W 6 0 531e779...
39064 2559 kjournald 926858672 8 W 6 0 4fd0c43...
467651 2522 kjournald 644661632 8 W 6 0 98b9cb7...

Table IV. Sample Data From IBM Watson, Stored on an XIV

Kind # Blocks is_read LBA Time Volume initiator_id Fingerprint
0 47 1 825850448 1313956791731167 101921 1000012 6c5fb8d...
0 61 1 825848704 1313956791765460 101921 1000002 d10b05c...
0 8 1 1485868928 1313956791817914 102669 1000009 76ca22b...

accesses from 2007 through 2010 that were made to a 16.5TB database. In addition
to the supplied type identifiers, each record accessed had a static1 RecordID that is
assigned as records are added to the system. We use these IDs as a second dimension
when calculating statistical groupings.

In addition to the access trace in Table V, we also had a file that mapped most of
the RecordID values to assorted RecordType values such as “BirthRecord,” “Marraige-
Record,” and so forth. We treat RecordType as a prelabeled group for categorical group-
ing, but also use RecordID as a spatial dimension to statistically group the wash
dataset. Though RecordID does not directly map to an on-disk location, we assume it
correlates to ingress and assume that records are originally laid out sequentially by
RecordID.

5. RESULTS

We ran every algorithm with msr and show that NNP provides consistently predictive
groupings while bag-of-edges is the most stable. We also show the remainder of our
datasets under NNP to demonstrate the versatility of the algorithm.

5.1. Neighborhood Partitioning

We tested the neighborhood partitioning algorithm on our data first to get some visibil-
ity into what groupings were present in the data and whether it would be worthwhile to
run our more computationally expensive algorithms. Neighborhood partitioning ended
up being very susceptible to small fluctuations of its initial parameters and to the spike
of writes in our workload. Figure 9 shows the working sets the algorithm returned with
the neighborhood set to half a standard deviation, calculated over the entire trace. The
read-write workload has a significantly tighter grouping because the prevalence of the
writes in the cache area overtook any effect of the reads. Isolating the reads, we see
in Figure 9(b) that the working sets become larger and more prevalent. This is due to
the reduction in noise, leading to stronger relative relationships between the points
that are left. We also notice that this technique is very fragile to the choice of neigh-
borhood. For example, reducing the neighborhood to a quarter of a standard deviation

1This is not quite true, but accurate for our purposes. Further explanation can be found in Adams et al.
[2012].

ACM Transactions on Storage, Vol. 12, No. 2, Article 7, Publication date: February 2016.

Statistical Techniques to Identify Predictive Groupings in Storage System Accesses 7:21

Table V. Sample Data from Washington Department of Records

RetrieveTrackingID UserSessionID RecordID RetrieveDate
1 {C8E99715-4725-427A-BCDF-708109D4935F} 34358 2007-09-27 13:31:10.407
2 {D2B7A983-7CC6-46C8-A10F-7B2557CF204F} 94267 2007-09-27 15:36:13.287
3 {1CE276B9-06F4-4AF7-9A08-E4038D83BBFB} 46679 2007-09-27 15:59:42.737

Fig. 9. Working sets with Neighborhood Partitioning in msr for different values of stdweight (the weighting
of the standard deviation). Groupings vary drastically based on neighborhood size and workload density.

(Figure 9(c)) causes the number of large groups to fall sharply and correspondingly
increases the prevalence of small groups.

5.2. k-NN

Figure 10 shows the working sets returned by running k-NN with k ranging from 3,200
to 25,600. The results for the k-NN working sets are more in line with expectations,
with many more small groups and a few scattered large groups. The groups are fairly
consistent across variation, with the larger neighborhoods resulting in somewhat fewer
small groups compared to the smaller neighborhoods. Note that the graphs in Figure 10
are calculated after the cache group is taken out. The cache group is a group of size
44,000 that was consistently identified by both the k-NN and bag-of-edges algorithms.
The consistent identification of this group is a strong indicator of the validity of our
grouping. For the sake of these graphs, however, removing it increases the visibility
of the other groups and better highlights the differences between the variations in
grouping parameters.

ACM Transactions on Storage, Vol. 12, No. 2, Article 7, Publication date: February 2016.

7:22 A. Wildani and E. L. Miller

Fig. 10. Working sets with k-Nearest Neighbor. If k is very high or low, fewer large groups are found.

5.3. Bag-of-Edges

In the msr data, our clique-based graph algorithm failed to ever find a group above
size 2. This is useless for actually grouping data on a system since the potential benefit
to prefetching one element is much smaller than the cost of doing the partitioning, and
it implies that the grouping is massively overfitting. The small groups are a result of
the strong requirements for being in a group that this algorithm requires: namely, that
every member in the group be strongly related to every other member. What this tells
us is that transitivity matters for grouping; that is, groups are a set of accesses that
occur sequentially.

Running the bag-of-edges algorithm on this data supports this hypothesis. This
algorithm is built with sequentially related groups in mind, and it returned groupings
comparable to k-NN in a fraction of the time. Figure 11 shows the groupings bag-of-
edges returns. The levels in Figure 11 represent the levels for the n-level distance
metric, where larger levels are equivalent to more lax thresholds. The majority of the
groupings are similar to k-NN, though at higher levels of distance we lose the larger
groups. This is due to the lack of cohesion in large groups versus smaller ones. Though
we produce larger groups, they are significantly smaller than those produced by other

ACM Transactions on Storage, Vol. 12, No. 2, Article 7, Publication date: February 2016.

Statistical Techniques to Identify Predictive Groupings in Storage System Accesses 7:23

Fig. 11. Working sets with the bag-of-edges algorithm. Higher levels result in much smaller groupings.

methods and are likely still overfitted. We also suspect that there is noise interfering
with the data when the search window is too large, similar to the read-write case for
neighborhood partitioning.

Figure 12 provides an example of the stability of bag-of-edges under varying the
weighting factors added to the parameters that make up the distance metric: namely,
time and the difference in offset numbers.

5.4. NNP

The majority of the applications we have investigated were run with N-Neighborhood
Partitioning, where we saw promising results in grouping workloads ranging from
fingerprints for deduplication to terabyte scale corporate data.

Figure 13 shows the direct improvement in number of disk seeks provided by NNP
grouping over the length of the fiu trace, which was 21 days long and included a total
of 17,836,701 accesses. As the figure shows, if grouped elements are prefetched into
cache, the total number of disk seeks is significantly lower when there is contention for
cache space. This indicates that data grouping is worthwhile as long as a rare grouping
overhead is less costly than adding more cache to the system. The trace also included

ACM Transactions on Storage, Vol. 12, No. 2, Article 7, Publication date: February 2016.

7:24 A. Wildani and E. L. Miller

Fig. 12. The bag-of-edges technique run on msr data with varying offset and time scaling. Each graph is
labeled as number of levels: offset scaling factor, time scaling factor. The resulting group distribution for a
given level is very similar regardless of the input parameters.

Fig. 13. Disk seeks in grouped versus ungrouped data for the fiu trace with an LRU cache. Note that with
small cache sizes, grouping has an outsized advantage that decreases as more data is simply left in the
cache.

ACM Transactions on Storage, Vol. 12, No. 2, Article 7, Publication date: February 2016.

Statistical Techniques to Identify Predictive Groupings in Storage System Accesses 7:25

Fig. 14. LRU cache hits across cache sizes. Grouped data does consistently at least as well and often
significantly better than ungrouped data. Ideal cache hits are determined by Belady’s algorithm [Belady
1966].

fingerprint hashes, and Figure 14 shows the results of NNP grouping used to predic-
tively populate a cache of fingerprints for an in-line deduplication system [Wildani et al.
2013]. Though the groups are small and unstable, grouping was consistently positive
and the groups have predictive power (Figure 15).

Table VI shows the actual runtime for NNP totaled across the life of the trace. The
overhead depends on how often regrouping was done. For instance, over the entire
Washington trace, NNP calculations added 26.473 seconds to the trace runtime. The
simulator we use actually runs slower than O(n) because we limit it to 5GB of memory,
and it is written using Python list structures. As a result, larger datasets spend a cor-
respondingly large amount of time writing or reading intermediate grouping data from
disk. Of course, the predictivity threshold below which regrouping is triggered can be

ACM Transactions on Storage, Vol. 12, No. 2, Article 7, Publication date: February 2016.

7:26 A. Wildani and E. L. Miller

Fig. 15. For the fiu dataset using LRU, predictive power of groups was unrelated to sequentiality. In
the ent-storage dataset using LRU, predictive power of groups fell as sequential groups increased. The
percentage of predictive accesses is deceivingly low because it is calculated as a percentage of total accesses,
which were an order of magnitude higher for fiu than ent-storage. The cache size was .01%.

Table VI. Runtimes for NNP in a Python Simulator Across Various Datasets
on an Intel Core i7-2600 CPU @ 3.40GHz with 32GB RAM

Name real user sys Avg. IOPS
ent-storage 0m9.513s 0m9.133s 0m0.340s 75997
fiu 7m4.228s 6m56.818s 0m3.332s 40.49
wash 0m26.473s 0m23.253s 0m0.852s 0.085
msr 0m6.928s 0m6.604s 0m0.292s 6.53

adjusted based on the tolerances of the system. For example, a system could set regroup-
ing to only happen overnight unless the current grouping is actively harmful. The sim-
ulator is structured thus for experimental efficiency on a multicore system, but there is
no reason that a real implementation needs to obey this limitation. Additionally, even

ACM Transactions on Storage, Vol. 12, No. 2, Article 7, Publication date: February 2016.

Statistical Techniques to Identify Predictive Groupings in Storage System Accesses 7:27

Fig. 16. The fiu grouping shows a surprisingly strong positive correlation between group size and purity,
where purity is defined as the homogeneity of a group with respect to a third, highly predictive feature such
as process ID that was not used in training. This indicates that the filters in place to prevent large, spurious
groups are working as intended.

with the inefficiency of our implementation, we see that we can quickly handle windows
of tens of thousands of I/Os since that is what the ent-storage trace presented.

5.5. Validity

Working sets emerge from how users and applications interact with the data. Conse-
quently, there is no “correct” labeling of accesses to compare our results to. Instead, we
focus on self-consistency and stability under parameter variation. As we saw in Fig-
ure 12, the working sets found by using the graph technique (or k-NN) are relatively
stable under parameter variation as long as the search space for determining distance
between access points remains fixed. We expect there to be variation here as a result
of natural usage shifts or cyclic usage patterns.

The msr dataset did not contain any external validation information such as a
tertiary metadata feature. We chose to not use cross-validation because any artificial
split will impact the groupings; training-testing splits must be temporal only, and they
come about automatically since the new data is accessed based on the groups defined
from previous data. Thus, we ran NNP on two other datasets (fiu and wash) that did.
We validate statistical groupings for both of these datasets using a third dimension of
the input that was not used in calculating the statistical groups. In the fiu dataset , we
have access to the PID that originated the I/O request. Figure 16 shows the breakdown
of groups by size according to the group purity, where a pure group is a group where
all members share the same originating PID for at least one access. Figure 17 shows

ACM Transactions on Storage, Vol. 12, No. 2, Article 7, Publication date: February 2016.

7:28 A. Wildani and E. L. Miller

Fig. 17. Both wash-A and wash-B show a strong correlation between group size and group purity, where
purity is defined as the homogeneity of a group with respect to a third, highly predictive feature such
as process ID that was not used in training. This indicates that the correlation is resistant to parameter
modification.

the same purity calculation where the groups are compared against the somewhat
predictive “Record Type” field.

6. SELECTING A GROUPING METHOD

Our grouping techniques produce groupings that are broadly either fast to recalculate
or very tightly fit to the training data. For instance, we designed NNP in response to
a scenario where groups changed very quickly and any group calculation needed to
be fast enough to respond to a changing workflow. In applications based on cache, we
needed to maximize the predictive power of groups in a small, fixed size cache, so we
further restricted NNP to bias heavily toward smaller groups. Power in an archival
system, on the other hand, required larger groups to minimize the layout overhead,
and these groups could be recalculated much less frequently based on our assumptions
about the archival workload.

As a result of this experience, we can also broadly divide application areas as “group-
ing for layout” and “grouping for caching.” We class an application as grouping for

ACM Transactions on Storage, Vol. 12, No. 2, Article 7, Publication date: February 2016.

Statistical Techniques to Identify Predictive Groupings in Storage System Accesses 7:29

layout when the goal of the grouping is to lay out data on physical media such that
colocated data has a high probability of coaccess. We showed instances of this ap-
plication type when using groups to reduce power consumption [Wildani and Miller
2010] and improve availability [Wildani et al. 2014]. In these scenarios, space is
relatively plentiful but groups can not change quickly, since the change requires a
layout overhead. Here, we want larger, more stable groups, such as those produced by
our bag-of-edges technique, along with ideally a more stable workload.

Grouping for cache management, on the other hand, requires a grouping technique
that biases toward smaller groups in order to avoid cache churn: when the additional
data pulled in by the grouping is evicted before it has a chance to be useful. Along with
smaller groups, groupings that populate caches should have parameter weights set to
bias more strongly toward temporal correlations since the lifetime of the group in cache
is so limited. If an application has a rapidly changing workload, a grouping technique
such as neighborhood partitioning that has a strong bias toward newer correlations
significantly outperforms grouping techniques that need more history. This is also why
we set window size for NNP as a function of the incoming IOPS: NNP is designed to
capture recent workload shifts.

7. DISCUSSION

A concern early on was that the access groups we discovered would overlap, leading
to a need to disambiguate and manually tune our models to the dataset. It turned
out, however, that in every classification scheme we saw no chains of more than three
overlapping groups. This allowed us to keep our methodology general and more likely
to be easily portable to other data. More importantly, this is a strong indication that our
groupings represent separate access patterns. If they did not, it is likely some of them
would have had overlapping components since the accesses are uniformly distributed.

Another encouraging result of our study was the consistency of groupings in the
data despite the sparsity of the traces. This indicates that it is worthwhile to look for
groupings in similar multiuser and multiapplication workloads even if the only data
available is block offsets and timestamps. Being able to collect useful workloads without
impacting privacy or performance is invaluable for continuing research in predictive
data grouping. This also reduces the cost of our analysis substantially, since we can
determine whether a workload will be separable before trying advanced techniques to
identify groupings and disrupting the system to group working sets together on disk.

For this research work, we were not concerned with the speed of computations as long
as the algorithms were efficient. While testing algorithms, we wrote all code in Python
and did not optimize for speed. Under this constraint, the localized distance techniques
such as NP ran nearly instantaneously, while the global techniques, particularly the
graph techniques, took between 20 and 35 minutes per run on a server with an 8-core
2.4GHz Intel R©Xeon processor and 24GB of RAM. We believe that much of this speed
can be regained by tighter code. Also, online implementations will handle less data per
timestamp than static test cases.

We realize the assumption that implicitly defined UIDs such as block offset do not
uniquely identify a piece of data is not strictly true in some systems. A majority of data
that is frequently overwritten is in the cache block, however, and this is consistently
identified as a single group by our algorithms. The less frequent overwrites that occur
as a result of normal system use should be handled by the adaptability of our algorithms
over time. If the content of a block offset changes, it will start being placed into different
groups as the algorithms update the distance matrix.

One surprising feature of the msr dataset was that it had a long list of consecutive
writes to the same block. We believe that these writes are the result of overwrite activity
in a log or a disk-based cache. These types of points are frequently present but filtered

ACM Transactions on Storage, Vol. 12, No. 2, Article 7, Publication date: February 2016.

7:30 A. Wildani and E. L. Miller

in other block I/O traces [Amer and Long 2002]. We intentionally include these points
in our classifications to verify that they trivially classify into their own working set.
Our k-NN and bag-of-edges methods can work around the noise of the spike to produce
realistic working set groups given reasonable parameters.

8. CONCLUSIONS

We have presented two distance metrics and three partitioning algorithms for sepa-
rating a stream of I/O data into working sets. We have found that the working sets
discovered by our method are stable under perturbation, implying that they have a
high-level basis for existing.

Overall, NNP outperformed every other method in terms of scalability even though
it, like NP, lacks stability. At the other extreme, bag-of-edges is a stable method for
situations where runtime is less of a concern. We also present an evaluation of how to
choose which grouping technique is best for which workload. Our methods are broadly
applicable across workloads, and we have presented an analysis of how different work-
loads should respond to different partitioning methods. Unlike previous work in the
field, we perform analysis using only data that can be collected without impacting the
performance of the system. Our methods are also designed to separate working sets
that are interleaved within the I/O stream. Finally, our methods are designed for use
on disks instead of cache, changing the design goals from “likely to be accessed next”
to “likely to be accessed together.”

A consistent, easily calculable grouping that is not tied to a specific workload opens
up two main avenues of work that is essential for the next stage of exascale system
development. First, we will be able to characterize workloads based on how they are
separated and how separable they are. Knowing a workload is likely separable allows
us to move onto the next step, which is dynamically rearranging data across a large
storage system according to the working set classification of the data. Being able to
rearrange data to minimize spin-ups will be essential to keeping down power cost and
increasing the long-term reliability of these increasingly vital storage systems.

8.1. Future Work

Our current project is to use a protocol analyzer to collect block I/O data from a mixed-
use, multidisk educational storage system to provide a direct comparison and validity
numbers to extend this work. With this data stream, we hope to implement working
set detection in real time, as well as track potential power savings and reliability
gains from grouping the data together according to the assigned working set. We are
analyzing our groupings using a variety of techniques that will be meaningful once we
have additional datasets to compare statistics with. This includes calculating the direct
overlap of elements between different groupings of working sets, calculating mutual
entropy between different groupings, and calculating a discrete Rand index value across
groupings [Rand 1971]. In the absence of other data, the numbers tell us little more
than our graphs do. Calculating these indices for two workloads would be a good first
step toward characterizing workloads based on their separability into working sets.
The final determinant of group validity will be the improvement in power consumption
and system usability that results in rearranging data in separable workloads to place
working sets together on disk.

Once we have more data, our next step is to discover what about a workload makes
it amenable to this sort of grouping. We believe that workloads with distinct use cases,
whether they be from an application or a user, are the best bet for future grouping
efforts, but many HPC and long-term storage workloads share some of the surface-
level properties that make the application servers good candidates. The goal of this

ACM Transactions on Storage, Vol. 12, No. 2, Article 7, Publication date: February 2016.

Statistical Techniques to Identify Predictive Groupings in Storage System Accesses 7:31

line of questioning is to derive a set of characteristics of a workload that would indicate
how easy it is to group along with what parameters to try first.

Another angle we are interested in is backtracking from our working sets to discover
which sources tend to access the same offsets of data. Once we know this, we can
implement more informed cache prefetching and, in large systems, physically move
the correlated offsets near to each other on disk to avoid unnecessary disk activity.
Previous work has led us to believe that even if files are duplicated across disks,
the potential gain from catching subsequent accesses in large, mostly idle systems is
high enough to make it worthwhile [Wildani and Miller 2010]. We are also interested in
refining the graph covering algorithm to accept groups that are only partially connected
instead of requiring complete cliques by implementing techniques from community
detection [Lancichinetti and Fortunato 2009].

REFERENCES

I. F. Adams, M. W. Storer, and E. L. Miller. 2012. Analysis of workload behavior in scientific and historical
long-term data repositories. ACM Transactions on Storage (TOS) 8, 2 (2012), 6.

A. Amer and D. D. E. Long. 2002. Aggregating caches: A mechanism for implicit file prefetching. In
IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommuni-
cation Systems (MASCOTS). IEEE, 293–301.

A. Amer, D. D. E. Long, J. F. Paris, and R. C. Burns. 2002. File access prediction with adjustable accuracy.
In IEEE International Conference on Performance, Computing and Communications (IPCCC). IEEE
Computer Society, 131–140.

I. Ari, A. Amer, R. Gramacy, E. L. Miller, S. A. Brandt, and D. D. E. Long. 2002. ACME: Adaptive caching
using multiple experts. In Proceedings in Informatics, Vol. 14. Citeseer, 143–158.

A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, L. N. Bairavasundaram, T. E. Denehy, F. I. Popovici, V.
Prabhakaran, and M. Sivathanu. 2006. Semantically-smart disk systems: Past, present, and future.
ACM SIGMETRICS Performance Evaluation Review 33, 4 (2006), 29–35.

M. Barbaro and T. Zeller Jr. 2006. A face is exposed for aol searcher no. 4417749. (August 2006).
L. A. Belady. 1966. A study of replacement algorithms for a virtual-storage computer. IBM Systems Journal

5, 2 (1966), 78–101.
E. G. Coffman, Jr. and Thomas A. Ryan, Jr. 1972. A study of storage partitioning using a mathematical

model of locality. Communications of the ACM 15, 3 (March 1972), 185–190.
D. Colarelli and D. Grunwald. 2002. Massive arrays of idle disks for storage archives. In Proceedings of the

2002 ACM/IEEE Conference on Supercomputing. IEEE Computer Society Press, 11.
C. Constantinescu, J. Glider, and D. Chambliss. 2011. Mixing deduplication and compression on active data

sets. In 2011 Data Compression Conference. IEEE, 393–402.
T. H. Cormen, C. E. Leiserson, and R. L. Rivest. 1990. Algorithms. MIT Press, Cambridge, MA.
X. Ding, S. Jiang, F. Chen, K. Davis, and X. Zhang. 2007. DiskSeen: Exploiting disk layout and access history

to enhance I/O prefetch. In 2007 USENIX ATC. USENIX Association, 1–14.
S. Doraimani and A. Iamnitchi. 2008. File grouping for scientific data management: Lessons from exper-

imenting with real traces. In Proceedings of the 17th International Symposium on High Performance
Distributed Computing. ACM, 153–164.

R. O. Duda, P. E. Hart, and D. G. Stork. 2001. Pattern Classification. Vol. 2. Citeseer.
D. Essary and A. Amer. 2008. Predictive data grouping: Defining the bounds of energy and latency reduction

through predictive data grouping and replication. Transactions on Storage 4, 1 (2008), 1–23.
Bert Dufrasne, Roger Eriksson, Lisa Martinez, and Wenzel Kalabza. 2012. IBM XIV Storage System Gen3 Ar-

chitecture, Implementation, and Usage. IBM, International Technical Support Organization. 426 pages.
P. Jaccard. 1901. Distribution de la flore alpine dans le bassin des Dranses et dans quelques régions voisines.

Bulletin del la Société Vaudoise des Sciences Naturelles 37 (1901), 241–272.
S. Jiang, X. Ding, F. Chen, E. Tan, and X. Zhang. 2005. DULO: An effective buffer cache management scheme

to exploit both temporal and spatial locality. In USENIX Conference on File and Storage Technologies
(FAST). USENIX Association, 8.

R. Koller and R. Rangaswami. 2010. I/O deduplication: Utilizing content similarity to improve I/O perfor-
mance. ACM Transactions on Storage (TOS) 6, 3 (2010), 1–26.

T. M. Kroeger and D. D. E. Long. 1996. Predicting file system actions from prior events. In Proceedings of the
1996 Annual Conference on USENIX Annual Technical Conference. Usenix Association, 26.

ACM Transactions on Storage, Vol. 12, No. 2, Article 7, Publication date: February 2016.

7:32 A. Wildani and E. L. Miller

T. M. Kroeger and D. D. E. Long. 2001. Design and implementation of a predictive file prefetching algorithm.
In USENIX Annual Technical Conference, General Track. 105–118.

A. Lancichinetti and S. Fortunato. 2009. Community detection algorithms: A comparative analysis. Physical
Review E 80, 5 (2009), 056117.

W. Li. 2008. An Efficient Query System for High-Dimensional Spatio-Temporal Data. Ph.D. Dissertation.
University of Massachusetts Lowell.

Z. Li, Z. Chen, S. M. Srinivasan, and Y. Zhou. 2004. C-miner: Mining block correlations in storage systems.
In Proceedings of the 3rd USENIX Conference on File and Storage Technologies. USENIX Association,
173–186.

S.-w. Lo, B.-H. Chen, Y.-W. Chen, T.-C. Shen, and Y.-C. Lin. 2014. ICAP, a new flash wear-leveling algorithm
inspired by locality. In Proceedings of the 29th Annual ACM Symposium on Applied Computing. ACM,
1478–1483.

S. J. Leffler M. K. McKusick, W. N. Joy, and R. S. Fabry. 1984. A fast file system for UNIX. ACM Transactions
on Computer Systems 2, 3 (Aug. 1984), 181–197.

A. E. Magurran. 2004. Measuring biological diversity. In African Journal of Aquatic Science 29, 2, 285–286.
J. Metz. 2012. Working document of the new technologies file system (NTFS). 0.0.3 (2012).
D. Narayanan, A. Donnelly, and A. Rowstron. 2008. Write off-loading: Practical power management for

enterprise storage. ACM Transactions on Storage (TOS) 4, 3 (2008), 1–23.
J. Oly and D. A. Reed. 2002. Markov model prediction of I/O requests for scientific applications. In Proceedings

of the 16th International Conference on Supercomputing. ACM, 147–155.
E. Pinheiro and R. Bianchini. 2004. Energy conservation techniques for disk array-based servers. In ICS’04.

ACM, 68–78.
W. M. Rand. 1971. Objective criteria for the evaluation of clustering methods. Journal of the American

Statistical Association 66 (1971), 846–850.
A. Riska and E. Riedel. 2006. Disk drive level workload characterization. In Proceedings of the USENIX

Annual Technical Conference. 97–103.
J. Schindler, J. L. Griffin, C. R. Lumb, and G. R. Ganger. 2002. Track-aligned extents: Matching access

patterns to disk drive characteristics. In Conference on File and Storage Technologies.
F. Schmuck and R. Haskin. 2002. GPFS: A shared-disk file system for large computing clusters. In

Proceedings of the 2002 Conference on File and Storage Technologies (FAST’02). USENIX, 231–244.
http://www.ssrc.ucsc.edu/PaperArchive/schmuck-fast02.pdf.

M. Sivathanu, V. Prabhakaran, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. 2005. Improving storage
system availability with D-GRAID. ACM Transactions on Storage (TOS) 1, 2 (2005), 133–170.

M. Sivathanu, V. Prabhakaran, F. I. Popovici, T. E. Denehy, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau.
2003. Semantically-smart disk systems. In Proceedings of the 2nd USENIX Conference on File and
Storage Technologies. 73–88.

N. Slonim, G. Singh Atwal, G. Tkacik, and W. Bialek. 2005. Information-based clustering. Proceedings of the
National Academy of Science 1021 (Dec. 2005), 18297–18302.

T. Sørenson. 1948. A method of establishing groups of equal amplitude in plant sociology based oil similarity
of species content. Biologiske Skrifter/Kongelige Danske Videnskabernes Selskab (1948), 1–34.

C. Staelin and H. Garcia-Molina. 1990. Clustering active disk data to improve disk performance. Princeton,
NJ, Tech. Rep. CS–TR–298–90 (1990).

A. S. Tanenbaum, J. N. Herder, and H. Bos. 2006. File size distribution on UNIX systems: Then and now.
ACM SIGOPS Operating Systems Review 40, 1 (2006), 104.

J. Wang and Y. Hu. 2001. PROFS-performance-oriented data reorganization for log-structured file system on
multi-zone disks. In IEEE International Symposium on Modeling, Analysis, and Simulation of Computer
and Telecommunication Systems (MASCOTS). Published by the IEEE Computer Society, 0285.

A. Wildani and E. L. Miller. 2010. Semantic data placement for power management in archival storage. In
2010 5th Petascale Data Storage Workshop (PDSW’10). IEEE, 1–5.

A. Wildani, E. L. Miller, and O. Rodeh. 2013. HANDS: A heuristically arranged non-backup in-line dedu-
plication system. In 2013 IEEE 29th International Conference on Data Engineering (ICDE’13). IEEE,
446–457.

A. Wildani, E. L. Miller, and L. Ward. 2011. Efficiently identifying working sets in block I/O streams. In
Proceedings of the 4th Annual International Conference on Systems and Storage. 5.

A. Wildani, E. L. Miller, I. Adams, and D. D. E. Long. 2014. PERSES: Data layout for low impact fail-
ures. In 22th IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS’14).

ACM Transactions on Storage, Vol. 12, No. 2, Article 7, Publication date: February 2016.

http://www.ssrc.ucsc.edu/PaperArchive/schmuck-fast02.pdf

Statistical Techniques to Identify Predictive Groupings in Storage System Accesses 7:33

G. Wu and X. He. 2012. Delta-FTL: Improving SSD lifetime via exploiting content locality. In Proceedings of
the 7th ACM European Conference on Computer Systems. ACM, 253–266.

N. J. Yadwadkar, C. Bhattacharyya, K. Gopinath, T. Niranjan, and S. Susarla. 2010. Discovery of application
workloads from network file traces. In Proceedings of the 8th USENIX Conference on File and Storage
Technologies. USENIX Association, 14.

S. Zaman, S. I. Lippman, L. Schneper, N. Slonim, and J. R. Broach. 2009. Glucose regulates transcription in
yeast through a network of signaling pathways. Molecular Systems Biology 5, 1 (2009).

X. Zhuang and H. H. S. Lee. 2007. Reducing cache pollution via dynamic data prefetch filtering. IEEE
Transactions on Computers (2007), 18–31.

Received April 2014; revised December 2014; accepted February 2015

ACM Transactions on Storage, Vol. 12, No. 2, Article 7, Publication date: February 2016.

