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Abstract
Recent increases in CPU performance have out-

paced increases in hard drive performance. As a result,
disk operations have become more expensive in terms of
CPU cycles spent waiting for disk operations to com-
plete. File prediction can mitigate this problem by
prefetching files into cache before they are accessed.
However, incorrect prediction is to a certain degree both
unavoidable and costly. Battery is a valuable resource
in a mobile computing environment. The utility of
mobile computers is greatly affected by the battery life.
Incorrect prediction not only wastes cache space, it also
consume battery energy. Consequently, incorrect predic-
tion is more expensive to mobile computers than its
counterpart to desktop computers. Last Successor (LS)
is a common baseline prediction algorithm due to its
simplicity and its surprisingly good performance. We
present the Program-based Last Successor (PLS) file
prediction model that identifies relationships between
files through the names of the programs accessing them.
Our simulation results show that PLS makes 21% fewer
incorrect predictions and roughly the same number of
correct predictions as LS. Hence, the amount of battery
energy wasted on incorrect prediction can be greatly
reduced. We also examine the cache hit ratio of applying
PLS to the Least Recently Used (LRU) caching algo-
rithm and show that a cache using PLS and LRU
together can perform better than a cache up to 40 times
larger using LRU alone. This shows that saving battery
energy and increasing performance can be reached at
the same time.

1. Introduction

Running programs stall if the data they need is not
in memory. As the speed of CPU increases, disk I/O
becomes more expensive in terms of CPU cycles. File
prefetching is a technique that mitigates the speed dif-
ference originating from the mechanical operation of
disk and the electronic operation of CPU [20] by pre-
loading files into memory before they are needed. The
success of file prefetching depends on file prediction
accuracy — how accurately an operating system can
predict which files to load into memory. Probability and

history of file access have been widely used to perform
file prediction [1,3,6,12,13,17,21], as have hints or help
from programs and compilers [2,17].

While correct file prediction is useful, incorrect pre-
diction is to a certain degree both unavoidable and
costly, particularly in a mobile environment where bat-
tery energy is a critical resource. An incorrect prediction
is much worse than no prediction at all. Not only does
an incorrectly prefetched file do nothing to reduce the
stall time of any program, it also wastes valuable cache
space and battery energy of mobile computers. Incorrect
prediction can also prolong the time required to bring
needed data into the cache if a cache miss occurs while
the incorrectly predicted data is being transferred from
the disk. Incorrect predictions can lower the overall per-
formance of the system and waste battery energy regard-
less of the accuracy of correct prediction. Therefore,
reducing the number of incorrect predictions is very
important to the utility of mobile computers.

We propose a new file prediction model, Program-
based Last Successor (PLS), inspired by the observation
that probability and repeated history of file accesses do
not occur for no reason. We contend that the reason is
that programs access more or less the same set of files in
roughly the same order every time they execute, so con-
secutive accesses of different files can be more accu-
rately predicted given knowledge about which programs
are accessing them. PLS uses this knowledge to deter-
mine program-specific last-successors for each file to
generate more accurate file predictions. Our results
demonstrate that PLS generates more accurate file pre-
dictions than the other file prediction algorithms exam-
ined. In particular, compared with LS, PLS reduces the
number of incorrect file predictions while maintaining
roughly the same number of correct predictions to pro-
vide better overall file prediction and therefore better
overall system performance. The amount of battery
energy wasted on incorrect prediction could also be
reduced accordingly.

We compare PLS with LS and Finite Multi-Order
Context (FMOC) [12]. Generally speaking, LS has a
high predictive accuracy -- our simulation results show
that LS can correctly predict the next file to be accessed
about 80% of the time in some cases. FMOC outper-
formed LS and other predicting algorithms in a one-



month trace in Kroeger's study [12] but performs
slightly worse than LS in our simulations. Our experi-
ments demonstrate that with traces covering as long as
13 months PLS makes up to 21.48% fewer incorrect
predictions than LS, giving PLS the highest predictive
accuracy among all three models in our comparison.
Consequently, compared with LS, PLS can reduce a
large amount of battery energy wasted on incorrect pre-
diction. We also examine the cache hit ratios of Least
Recently Used (LRU) with no file prediction, and LRU
with PLS. We observe that PLS always increases the
cache hit ratio and in the best case, LRU and PLS
together have a better cache hit ratio than a cache 40
times larger using LRU alone.

Research has shown that appropriately spinning
down the hard disk can greatly save battery energy
[4,5,7,8,9,11,15,23]. Most of energy-saving algorithms
make disk spindown decisions based on previous disk
access pattern. Incorrect prediction could mislead these
algorithms and lower their effectiveness by changing the
original disk access pattern generated by running pro-
grams. PLS reduces many cases of incorrect prediction
done by LS, which leads to a more accurate sequence of
disk accesses closer to what really generated by pro-
grams in execution. In a real environment where file
prediction is performed, energy-saving algorithms will
benefit from this accordingly.

2. Related Work

Griffioen and Appleton use probability graphs to
predict future file accesses [6]. The graph tracks file
accesses observed within a certain window after the cur-
rent access. For each file access, the probability of its
different followers observed within the window is used
to make prefetching decision. Lei and Duchamp use pat-
tern trees to record past execution activities of each pro-
gram [14]. They maintain different pattern trees for each
different accessing pattern observed. Vitter, Curewite,
and Krishnan adopt the technique of data compression
to predict next required page [3,22]. Kroeger and Long
predict next file based on probability of files in contexts
of FMOC [12]. Patterson et al. develop TIP to do pre-
diction using hints provided from modified compilers
[18]. Chang and Gibson design a tool which can trans-
form UNIX application binaries to perform speculative
execution and issues hints [2].

Greenawalt models disk accesses by a Poisson dis-
tribution [8]. Krishnan et al. [11] develop a two-stage
rent-to-by algorithm to predict the period between cur-
rent and next disk accesses. The first stage generates a
small number of candidate periods, and the second stage
chooses the candidate performing best as if it had been

used in the past. Helmbold et al. [9] adopts a machine
learning algorithm to generate certain number of fixed
time-out periods as experts to predict the next time-out.
Each expert is weighted by its current performance, and
the weighted average of all experts is the predicted next
time-out.

Douglis et al. [5] describe the undesirable waiting
period as bump if the spin-up delay exceeds a certain
percentage of the time that disk stays in spin-down sta-
tus. They adaptively adjust the spin-down threshold
depending on if the most recent spin-up delay is viewed
as a bump or not. Li et al. [15] and Douglis et al. [4]
demonstrate that using a shorter threshold in seconds
instead of minutes commonly suggested by manufactur-
ers will save a large amount of energy.

3. LS, FMOC, and PLS Models

We start with a brief discussion of LS and FMOC
models, followed by details of how to implement PLS
model.

3.1. LS and FMOC

Given an access to a particular file A, LS predicts
that the next file accessed will be the same one that fol-
lowed the last access to file A. Thus if an access to file B
followed the last access to file A, LS predicts that an
access to file B will follow this access to file A. This can
be implemented by storing the successor information in
the metadata of each file. One potential problem with
this technique is that file access patterns rely on the tem-
poral order of program execution, and scheduling the
same set of programs in different orders may generate
totally different file access patterns.

FMOC predicts the next file to be accessed from the
files that have been seen so far in “context” [12]. Each
file seen in a context has a probability indicating the
likelihood that it follows that context. FMOC often
prefetches multiple files for each prediction. The “addi-
tive accuracy” was defined to compare the performance
between FMOC and LS [12]. If the next file accessed is
among those files prefetched, then the predicted proba-
bility of that file is added to the score of FMOC. The
final score is then normalized by the number of events
in the simulation trace to obtain the “additive accuracy”
[12]. Since LS only predicts one file at a time, we add
one to its score if it makes a correct prediction. No score
is added for a wrong prediction. The final score is also
normalized. Kroeger's study showed that using order
higher than two resulted in negligible improvements so
in this work we only examine the second order FMOC
model (denoted as FMOC2).



3.2. PLS

Lacking a priori knowledge of file access patterns,
many file prediction algorithms use statistical analysis
of past file access patterns to generate predictions about
future access patterns. One problem with this approach
is that executing the same set of programs can produce
different file access patterns even if the individual pro-
grams always access the same files in the same order.
Because it is the individual programs that access files,
probabilities obtained from the past file accesses of the
system as a whole are ultimately unlikely to yield the
highest possible predictive accuracy. In particular, prob-
abilities obtained from a system-wide history of file
accesses will not necessarily reflect the access order for
any individual program or the future access patterns of
the set of running programs.

File reference patterns can describe what has hap-
pened more precisely if they are observed for each indi-
vidual program, and better knowledge about past access
patterns leads to better predictions of future access pat-
terns. PLS incorporates knowledge about the running
programs to generate a better last-successor estimate.
More precisely, PLS records and predicts program-spe-
cific last successors for each file that is accessed.

Suppose a file trace at some time shows pattern AB,
and pattern AC occurring 60% and 40% of the time
respectively. A probability-based prediction will prefer
predicting B after A is accessed. If B and C tend to alter-
nate after A, then LS will do especially poorly. But the
reason that pattern AB and AC occur may be quite differ-
ent. For instance, in Figure 1, the file access pattern AB
is seen to be caused by program P1, while the file access

pattern AC is caused by program P2. In other words,
what is really behind the numbers 60% and 40% is the
execution of two different applications, P1 and P2. After
we collect this information (a set of pairs consisting of
“program name” and “successor”) for file A, next time it
is accessed we can predict either B or C depending on
P1 or P2 is accessing A another program. Of course, if a
particular program accesses multiple different files after

each access of a particular file, then the program-spe-
cific last successor will change.

One can argue that the same program may access
different sets of files each time that it is executed, partic-
ularly a system utility program such as a compiler.
While it is true that compiling different programs will
result in different files being accessed, compiling the
same program multiple times will result in many or all
of the same files being accessed in the same order. Thus
PLS will make correct predictions for most of these
files, even when alternating compilations between two
sets of files. Assume, for example, that two programs
need to be compiled. The first program needs files X1,

X2 , ... , Xm , in that order, and the second program needs
files Y1 , Y2 , ... , Yn , in that order. If X1 and Y1 are differ-
ent files, then we don't know which file to predict when
the compiler starts running, but as soon as either X1 or

Y1 is accessed we know which file to prefetch next. If X1

and Y1 are the same, then we prefetch this file and wait
to see whether X2 or Y2 is needed, and then we can pre-
dict the next file after that. Hence we can predict all files

except the first occurrence of ( )
until the access to the next shared file Xj (which is the
same as Yj , i < j) comes up.

PLS can also avoid the slow adaptation problem in
probability-based prediction models. Probability-based
models always predict the same file until the corre-
sponding probability changes. Like LS, PLS does not
rely on probability so it can respond immediately as file
access patterns change.

Two issues that need to be addressed are how to
collect the metadata in terms of <program name, suc-
cessor> for each file, and how big the metadata needs to
be in order to make accurate predictions. The first issue
is simple. Programs are executed as processes, so we
can just store the program name in the process control
block (PCB). For each running program (say P), we also
need to keep track of the file (say X), which it has most
recently accessed. When P accesses the next file (say Y)
after X, we update the metadata of the X with <P, Y> and
the next time that P accesses X, PLS can predict that the
next file accessed will be Y.

In the example of Figure 1, when P1 accesses the
next file (say B) after its access to A, we update the
metadata of A with <P1, B>, and next time P1 accesses
A, PLS can predict that the next file accessed will be B.
Similarly, A also keeps <P2, C> as parts of its metadata.

The metadata of files in Figure 1 is shown in Table 1.
The second issue is not quite as simple as the first.

Ideally, for each file we would like to record the name of
every program that has accessed it before, along with
the program-specific successor to the file, so that we
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Figure 1: Program-based Last-Successor model

Xi Yi≠ i min m n,( )≤



know which file to predict when the same program
accesses the file again. In reality, this may be too expen-
sive for files used by many different programs. Conse-
quently, we may need to limit the number of <program
name, successor> pairs kept for each file. However, our
simulation shows that the vast of majority of files are
accessed by six or fewer programs and thus metadata
storage is not a problem.

A few terms need to be clarified here. The first is
that when we use the term “program”' we mean any run-
ning executable file. Thus a driver program that
launches different sub-programs at different times is
considered by PLS to be a different program from the
sub-programs, each of which is also treated indepen-
dently. The second is that both “program name” and
“file name” include the entire pathname of the files. This
is important because different programs with the same
name can access the same file and different files with
the same name can be accessed by different programs,
and these accesses must all be handled correctly.

4. Experimental Results

In this section, we will discuss the trace data we
used to conduct our experiments, and how we compare
performance of FMOC2, LS, and PLS.

4.1. Simulation Trace and Experimental Meth-
odology

In examining PLS we used the trace data from
DFSTrace used by the Coda project [10,16]. These
traces were collected from 33 machines during the
period between February of 1991 and March of 1993.
We used data roughly equal to the second half of the
entire trace from four machines, Barber, Mozart,
Dvorak, and Ives. Barber was a server, Mozart was a

desktop workstation, Dvorak had the highest percentage
of write, and Ives hosted the most users. Table 2 lists the
period of trace for each machine used in our simulation.
Research has demonstrated that the average life of a file
is very short [1]. Therefore, instead of tracking every
READ or WRITE event, we track only the OPEN and
EXECVE events in our simulation.

As mentioned above, PLS needs to be able to deter-
mine the name of a program in order to generate its pre-
dictions. Because we cannot obtain the name of any
program that started executing before the beginning of
the trace, we exclude all OPEN events initiated by any
process id (pid) which started before the beginning of
our trace. Intuitively this filtering has no effect on the
results of our experiments because the filtering is based
only on the time at which the program began. In a real
system such filtering is not necessary because all pro-
gram names are known.

We score PLS the same way we score LS, by add-
ing one for each correct prediction and zero for each
incorrect prediction. We normalize the final scores of
PLS and LS by the number of predictions, not by the
number of events as in the FMOC2 model. This is
because the first time that a file is accessed there is no
previous successor to predict and so the failure to make
a prediction the first time cannot be considered incor-
rect. Since our simulation trace is very long (between 10
and 13 months), it turns out that the effect of this com-
pulsory error is negligible and does not affect the predic-
tion accuracy comparison among the models.

4.2. Model Comparison

We used the filtered trace data to evaluate FMOC2,
LS, and PLS. Figure 2 shows that PLS has the highest
predictive accuracy in all machines. For models predict-
ing one or more files at a time such as FMOC2, the addi-

Table 1: Metadata of Figure 1 kept under PLS model

File <program name, successor>

A <P1,B>, <P2,C>

B <P1,NIL>

C <P2,NIL>

Table 2: Trace data used

Machines Used Barber Mozart Dvorak Ives

begin month 4/92 3/92 6/92 6/92

end month 2/93 3/93 3/93 3/93

months covered 11 13 10 10
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Figure 2: Additive accuracy of FMOC2, LS, and PLS



tive accuracy indicates the likelihood that the next file
actually referenced is among those predicted files. How-
ever for models predicting one file each time, like LS
and PLS, there is no difference between the additive
accuracy and the regular predictive accuracy, which rep-
resents the percentage of the time that a prediction
model correctly predicts the next file.

One pitfall in comparing prediction models in terms
of predictive accuracy is that higher predictive accuracy
does not assure the success of a model because the
scores are commonly normalized by the number of pre-
dictions made, which does not include those cases
where no prediction was made. Consider two prediction
models, A and B. If A makes 40 correct predictions, 40
incorrect predictions, and does not make a prediction 20
times out of a total of 100 file accesses, then A's predic-
tive accuracy is 50%. Suppose B makes only 2 correct
predictions, 1 incorrect prediction, and does not make a
prediction 97 times. B's predictive accuracy is 67%, but
model B is almost useless in practice.

Clearly, in order to examine the real performance of
a prediction model, we need other information besides
predictive accuracy. Thus, we use LS as the baseline to
evaluate the performance of PLS in three categories.
The first category is the percentage of total predictions
(including correct and incorrect predictions) made by
PLS as compared with LS. This percentage should not
be to too small, otherwise PLS may be an unrealistic
model just like the model B above. The second is the
percentage of correct predictions made by PLS as com-
pared with LS. This number should be as high as possi-
ble. The last category is the percentage of incorrect
predictions made by PLS as compared with LS. Ideally
this percentage should be less than 100%, indicating that
PLS makes fewer incorrect predictions than LS.

4.3. Category Performance

We can not do the same comparison with FMOC
due to the nature of the FMOC model, as discussed
above. Figure 3 displays the PLS performance normal-
ized by LS in the three different categories. The col-
umns marked “total” show that the total number of
predictions made by PLS is about 95% of the number
made by LS. This is close enough to consider PLS to be
a practical prediction algorithm in terms of the number
of predictions it makes. The middle columns marked
“correct” are the percentages of correct predictions. The
percentage for Barber from PLS is over 99% of the
number from LS, for Ives it is over 98%, and for both
Mozart and Dvorak PLS makes more correct predica-
tions than LS. Percentages from the middle columns
demonstrate that PLS can do roughly as well as LS in

correctly predicting files. Finally, the columns marked
“incorrect” show that PLS indeed makes about 15% to
22% fewer wrong predictions as compared with LS,
which is a very exciting result. This explains why the
PLS model has the highest prediction accuracy among
all three models in Figure 2.

The reduction of incorrect predictions in PLS is sig-
nificant enough to be worthy of further exploration.
Since the percentage of total predictions made by PLS is
about 95% of LS, and the number of correct predictions
is roughly same as LS, we conclude that PLS must make
more no predictions than LS. We collected the percent-
age of no predictions from PLS compared with LS, and
the result is displayed in Figure 4, which confirms this
surmise. Figure 4 shows that the number of no predic-
tions made by PLS is roughly about three to six times
more than that made by LS.
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We stated earlier that some events were filtered out
of our trace data due to the requirement that PLS needs
to know the program initiating an event, and we claimed
that the filtering does not affect the validity of our
results. To verify this, we compared the percentage of
events filtered out of original trace data with PLS pre-
dictive accuracy for each machine. Our assumption was
that if the filtered data had affected our results, the effect
would be greater for larger amounts of filtered data.
However, the results in Figure 5 show that the predictive
accuracy of PLS (the back row) is unrelated to the per-
centage of events filtered out from the original trace
data of each machine (the front row).

One last note about the number of <program name,
successor> pairs that a file requires to successfully
implement PLS. Our simulation results show that for
Barber, more than 99% of files are accessed by six or
fewer programs, while more than 99% of files are
accessed by five or fewer programs for the other three
machines. Thus the amount of data stored for each file
in PLS is not of concern.

In addition to predictive accuracy we also want to
know how PLS performs in terms of cache hit ratio, and
additional experiments were conducted to determine
this. We set the cache size according to the number of
files it can hold for two reasons. The first is that file size
is usually small, so the entire file can often be
prefetched into cache [19]. The second is that in the case
of large files, sequential read is the most common activ-
ity. Modern operating systems can already identify
sequential read accesses and techniques such as
prefetching the next several data blocks for sequential
read have been implemented. We simulate cache with
different sizes ranging from 25 files to 2000 files, and
compare the cache hit ratios between the LRU caching
algorithm with no prediction and the LRU caching algo-

rithm with PLS. Figure 6 shows that when using PLS
prediction, the cache always performs better than when
using LRU alone, regardless of cache size, and in some
cases even better than a cache up to 40 times larger.

5. Future Work

Several alternatives may improve the performance
of PLS and are worthy of further exploration. For exam-
ple, additional information such as the user for whom
the program is running may provide additional perfor-
mance gains. PLS may also use the preceding file
together with the <program name, successor> to
improve performance. On the other hand, files existing
temporarily (such as those in /tmp directory) usually
won't get the same name next time they are created. If
so, then they can never be predicted correctly by PLS
and there is no need to store their information.

6. Conclusions

While correct prediction can improve system per-
formance, incorrect prediction will waste valuable bat-
tery energy of mobile computers. Reducing the number
of files incorrectly predicted is very important to the
utility of mobile computers in terms of saving both
cache space and battery energy. We propose PLS, a new
program-based last successor model. Our simulations
from PLS show good results in predicting files, espe-
cially in eliminating the cases of incorrect prediction.
More than 21% of incorrect predictions can be reduced
as compared with LS in some cases as our results dem-
onstrate. Hence, the amount of battery energy wasted on
incorrect prediction can be reduced accordingly.
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