
Efficient Access Control for Distributed Hierarchical File Systems

Kristal T. Pollack
kristal@cs.ucsc.edu

Scott A. Brandt
scott@cs.ucsc.edu

University of California, Santa Cruz

Abstract

To determine whether a user can access a file in a hi-
erarchical file system a traversal of the directory hierarchy
is required in order to check access control for all the par-
ent directories. This traversal can be especially expensive
in a distributed system where the files may be on separate
devices. We present two approaches for representing the
complete access control for a file and its parent directo-
ries such that it can be stored locally with each file in or-
der to avoid traversal. We use the well-known CNF and
DNF (Conjunctive and Disjunctive Normal Form) formats
to store permission and ownership information compactly
for the entire path to a file. An examination of the structure
of an existing large shared file system demonstrates the ef-
ficacy of our solution.

1. Introduction

In a traditional UNIX-like file system access to a file is
governed not only by the file’s permissions, but by the hier-
archy of permissions of all of the directories above it. Ac-
cess control in these systems consists of both permissions
(read, write, execute) and ownership (user, group) informa-
tion, located in the metadata for each file. Calculating these
access controls for a file requires the traversal of the direc-
tory hierarchy. The traversal of a directory hierarchy can be
expensive, especially in the case of distributed file systems
where traversal may require network trips between nodes.
This paper proposes a way to preserve the hierarchical ac-
cess controls for a distributed file system without requiring
a traversal of the directory tree by compressing the access
controls locally for each file. This idea builds upon the
dual-entry access control lists proposed in the Lazy-Hybrid
(LH) metadata management approach [2].

Requiring that all users of a large-scale distributed file
system access one machine for all metadata operations is
an obvious bottleneck. For this reason distribution of meta-
data is crucial for the overall scalability of such a system [2]
[8]. In addition, large distributed systems should not have

Metadata
Servers

Metadata
Access

Metadata
Updates

Data
Reads/Writes

Object Based
Storage Devices

Clients

Figure 1. Distributed Object Storage system
architecture

a single point of failure. Large distributed storage systems
should therefore not rely on having one machine store all
of the metadata. It will be necessary to have multiple ma-
chines that can perform this task. Figure 1 shows the ar-
chitecture that has been emerging in many of the large dis-
tributed storage systems [2] [6]. Clients receive metadata
from a cluster of specialized metadata servers which en-
ables them to access the disks directly and perform I/O op-
erations such as reads and writes.

To avoid unbalanced load or hot-spots on one of the
metadata servers a hash-based approach has been used in
many similar systems to distribute the metadata uniformly
across the metadata servers. Metadata is typically dis-
tributed based on a hash of the full path of the file or some
combination of the directory path and the file name. There
are many benefits to having a hash-based location for a dis-
tributed file system, not only for workload balance but also
for metadata location. By storing metadata based on the
hash of the file name the clients of the system can quickly
locate metadata for a file by applying the hash function on

Proceedings of the 22nd IEEE/13th NASA Goddard Conference on Mass Storage Systems and Technologies (MSST 2005)
0-7695-2318-8/05 $20.00 © 2005 IEEE

the full path name. A previous study on hierarchical file
systems showed that even for a non-distributed system, file
location made up a high percentage of all the memory ac-
cesses in order to traverse the directories required to locate
a file [4]. For distributed systems this is especially signifi-
cant, since a directory traversal will likely require accessing
multiple nodes in the distributed system. However, similar
to file location, determining access control for files typi-
cally requires a directory traversal since it is necessary to
satisfy the permissions for all directories above a file in the
directory tree (these are the types of systems we will con-
sider for this paper). This poses a significant problem for
hash-based systems in that the performance gain of hashed-
based location would be lost if the directory hierarchy still
had to be traversed in order to calculate the access control
for a file. Recent distributed file systems have lacked the
ability to correctly preserve these hierarchical permissions
without requiring a directory traversal and still harness the
benefits of hash-based location schemes.

This paper proposes two methods that can be used to
store access control information by compressing the per-
missions and ownership metadata for the entire path of a
file into a single compact representation and storing it lo-
cally with the metadata for each file. This allows the com-
plete access control information for each file to be accessed
when the metadata for the file is accessed, without requir-
ing a traversal of the directories in the path of the file.
We look at representing access control as a conjunction
of disjunctions (CNF) and as a disjunction of conjunctions
(DNF). Since the path of a file can be of arbitrary size, so
can the permission and ownership information needed to
represent the correct access control for the file. However,
with this information in CNF or DNF format it is simple
to apply a number of logical rules to simplify the expres-
sions into a more compact representation. We present a
worst case analysis for the computation and size of the rep-
resentation for both methods. We also present results from
analyzing the metadata of an existing large shared file sys-
tem and show that in practice our representation is quite
compact. For a system with approximately 4 million files,
1500 unique users, and a maximum tree depth of 32, we
can represent access control for 31% of the files with no
additional information (empty set), 68% with just one user,
group or user/group pair, and less than 1% with two users,
groups or user/group pairs.

2. Related Work

This work is general enough to apply to any file system
with hierarchical access controls but it is most relevant to
distributed file systems. A problem that arises in distributed
file systems is how to maintain UNIX-like hierarchical ac-
cess. Previous solutions have either involved a potentially

expensive directory traversal or have not supported it at all.
To our knowledge no published work attempts to compress
the permissions and ownership of files to avoid traversal.

One approach for a distributed file system is to distribute
data by directories. This stores entire directory subtrees on
separate machines, much like NFS [11], Lustre [1] and Dy-
namic Partitioning [13]. These systems require the traver-
sal of directories for locating files, as well as checking own-
ership and permissions. Compressing the permissions and
ownership as we are proposing does not benefit these sys-
tems a great deal since they must traverse the directory hi-
erarchy regardless. However, this subtree partitioning ap-
proach for distributed systems suffers from load balancing
issues that can grow more severe as the file system ages.

Another approach for distributing metadata is to use a
hashing scheme where files are distributed based on a hash
of some file identifier. This helps to balance the load among
the devices and helps to avoid hot-spots associated with a
popular directory of files. It also prevents a popular di-
rectory from becoming a bottleneck since the directory file
does not have to be read every time a file underneath it
is accessed. Overall this method provides an efficient ap-
proach for locating and allocating metadata since it does
not require a traversal of the directory hierarchy. Many
current systems have adopted this approach such as Lazy-
Hybrid [2], HAP [14], Vesta [3] and RAMA [9]. The draw-
back to this approach is that in order to preserve hierar-
chical access control models the directory hierarchy is still
traversed. The cost of this traversal varies depending upon
where the ownership and permission information is stored
in the system.

Systems such as HAP store ownership and permission
information on metadata servers. Determining correct ac-
cess control requires that the metadata for every directory
above the file in the directory hierarchy be accessed. Due
to the hash-based allocation method, the metadata for these
directories may reside on different metadata servers. So
each of these metadata servers would have to be contacted
in order to determine the correct access control for a single
file.

RAMA stores ownership and permission information
with the object it describes. Therefore to check this in-
formation the location of the data needs to be determined
and it must visit where the actual data is stored to read the
metadata to check if access should be granted. Not only
does this incur overhead in checking possibly distributed
directories, but this could also pose a security issue in that
the location of the stored object is given to the client before
it is determined if the client is allowed to access that object.

Vesta stores metadata on metadata servers as well. The
developers conceded that checking directory permission
bits for every level of the directory hierarchy was a problem
in Vesta [3]. Instead of traversing directories to preserve hi-

Proceedings of the 22nd IEEE/13th NASA Goddard Conference on Mass Storage Systems and Technologies (MSST 2005)
0-7695-2318-8/05 $20.00 © 2005 IEEE

erarchical access control, they simply chose not to support
it.

3. Lazy-Hybrid Metadata Management

This research is targeted at improving the Lazy-Hybrid
approach [2], though it may be generalized to any file sys-
tem that has hierarchical access control. The Lazy-Hybrid
solution is a hashed-based technique, hashing the full path
name of a file to obtain a unique identifier. Each metadata
server is assigned a range of the hash values to maintain,
and this assignment is stored in a global table. When a
client wants to access a file the client simply hashes the full
path of the file and determines which metadata server to
contact based on the global table. If a metadata server is
added or removed the global table is updated to reflect the
change.

In order to avoid path traversal while calculating the
permissions for files, the Lazy-Hybrid (LH) method uses
a dual-entry access control list to manage access to a file.
This stores the path permissions and the file permissions for
a file. The path permissions are the intersection of the par-
ent directory’s path permissions and the file permissions of
the current file. If the permissions of the parent directory or
the file change the access control of the file can be recom-
puted by taking the intersection of the parent’s path per-
missions and the file’s permissions. In this way the access
control hierarchy is preserved for the permission bits and
only requires traversal in the case of a directory permission
change, and even this type of operation can be postponed
with logging. LH avoids directory traversal for permission
bits, but does not consider ownership information stored
along the hierarchy. This is commonly overlooked and was
similarly neglected in the Logic File System [10]. It is
important to preserve the ownership information with the
permission bits as the permission bits for a file directly cor-
respond to the user and group that have ownership of the
file. The next section shows why preserving both the per-
mission bits and the ownership information of all the files
is important and outlines a clean solution.

4. Design

In order to avoid directory traversal while maintaining
hierarchical access controls we need to store access control
information for the parent directories of a file along with
those of the file itself. A method for storing the permission
bits compactly was given in the Lazy-Hybrid method [2].
However, we cannot just store information about permis-
sion bits of each parent directory since these permission
bits only define the access rights of the specific user and
group that have ownership of that file. Therefore this own-
ership information needs to be stored as well.

User 2
Group A

User 2
Group A

Must be in Group
A, or be User 1
and User 2

User 1
Group A

User 1
Group A

User 1
Group B

User 1
Group B

Must be User 1
or in Group A
and Group B

User 2
Group B

User 2
Group B

Must be in Groups
A and B, or be
User 1 and in
Group B, or be
User 2 and in
Group A

Case 1 Case 2 Case 3

User 1
Group A

User 1
Group A

User 1
Group A

User 1
Group A

Figure 2. Three cases where it is necessary
to know the access control of parent direc-
tories. For these cases the permission bits
of all the files are set to allow access to the
user and the group.

Figure 2 shows three general cases where storing the
ownership information for parent directories is necessary
for correctness. We will discuss later how often cases like
these come up in a real system. Case 1 shows the situa-
tion in which the user that has ownership is different for
the parent directory and the child directory while the group
is the same. Access to the child directory and all of its
sub-files will be restricted to any member of the group or
a user that is the user for the parent directory and the child
directory. However, since a user cannot be both User 1 and
User 2 at the same time, access is simply restricted to the
group. Case 2 shows the situation in which the group that
has ownership is different for the parent directory and the
child directory while the user is the same. Access to the
child and all of its sub-files will be restricted to the user
that has ownership and any user that is a member of both
the group that owns the parent and the group that owns the
child. Case 3 is the situation in which both the user and
the group that have ownership of the parent directory and
the child directory are different. This is effectively a com-
bination of the two previous cases. Access to the child and
all of its sub-files is restricted to a user that: is a member
of both the group that owns the parent and the group that
owns the child, owns the child directory and is a member of
the group that owns the parent directory, or owns the parent
directory and is a member of the group that owns the child
directory. We can express these access requirements con-
cisely as some combination of “and”s and “or”s, as shown
at the bottom of Figure 2.

Proceedings of the 22nd IEEE/13th NASA Goddard Conference on Mass Storage Systems and Technologies (MSST 2005)
0-7695-2318-8/05 $20.00 © 2005 IEEE

Table 1. Possible values for “execute” per-
missions of user/group/others and the corre-
sponding predicates, where u is user and g is
group.

000
�

001 � u ��� g
010 � u � g
011 � u
100 u
101 u ��� g
110 u � g
111 �

Since we can express the access control requirements
as a series of users and groups joined by “and”s and “or”s
we can express them in Conjunctive Normal Form (CNF,
“and”s of “or”s) or Disjunctive Normal Form (DNF, “or”s
of “and”s). This is a straightforward and convenient repre-
sentation that is commonly used when dealing with predi-
cates. In order to determine which users and groups belong
in these expressions we simply need to record the user and
group settings for the execute permission bit (the “x” bit in
UNIX). We only care about the execute bit because it is the
only permission that carries down recursively, determining
whether or not a user can access a file below a directory.
Table 1 shows each possible setting for the execute per-
mission and the corresponding predicates that represent the
correct access control. In other words, what we have done
is merged the ownership and permission information into
a single expression. It is somewhat similar to the concept
of access control lists used in other prominent file systems,
and in fact, we can use this representation to express those
as well.

4.1. CNF

Storing the access control information in CNF format
is very straightforward. We can store the user and group
at each level as a disjunctive clause (user or group) de-
pending on the corresponding execute bits, as shown in
Table 2. This is a fairly intuitive representation since vis-
iting each clause is like visiting each directory and veri-
fying that the user meets the requirements to access that
directory. Table 1 shows the subsequent user/group com-
binations for each possible permission mask. There are
two cases for which we must store the information in two
singular clauses, when the user and the group are denied
access (001) and when only the group is allowed access
(010). Each clause represents one of the requirements a
user must satisfy in order to access a file. If a user satisfies

Path access requirements
(1 or 2) and (3 or 4)

User 1
Group 5
rwxr-x--- Path access requirements

(1 or 2) and (3 or 4) and (1 or 5)

File access requirements

Figure 3. Calculating the path access require-
ments for a file.

Table 2. CNF for the cases shown in Figure 2

Case 1 � A � 1 �	�
� A � 2 �
Case 2 � 1 � A �	�
� 1 � B �
Case 3 � A � 1 �	�
� B � 2 �

each clause then the user has access rights to the file. This
is similar to the simple idea of storing the ownership and
permission data for each of the parent directories in a list
and checking that a requirement is satisfied for each direc-
tory before granting permission. Our method of storing the
ownership and permission data is much more efficient as
it merges these two sources, thereby eliminating unneces-
sary information. We will show later that once we have the
access control in this CNF representation we can further
compact the representation by using some additional logic.

We can use this CNF representation to represent the ac-
cess control for an entire hierarchical file system by using
a strategy very similar to the dual-entry access control list
used in the Lazy Hybrid method [2]. For each file we have
file access requirements and path access requirements. The
file access requirements are simply the ownership informa-
tion and the permission bits that would normally be stored
with the metadata for a file in a file system. The path access
requirements are a CNF representation of the file access re-
quirements combined with the path access requirements of
all the parent directories above it. Since the path access
requirements are stored for every file in the directory tree,
only the path access requirements of the immediate parent
of the file need to be merged with the file access require-

Proceedings of the 22nd IEEE/13th NASA Goddard Conference on Mass Storage Systems and Technologies (MSST 2005)
0-7695-2318-8/05 $20.00 © 2005 IEEE

Table 3. DNF for the cases shown in Figure 2.

Case 1 � 1 � 2 �	�
� A �
Case 2 � A � B �	��� 1 �
Case 3 � 1 � 2 �	��� A � 2 �	��� B � 1 ���
� A � B �

ments in order to calculate the file’s path access require-
ments. This operation is illustrated in Figure 3.

During this operation, or afterwards, a few simple rules
can be applied to our CNF expressions to further reduce
them. For instance, we can check previous clauses in our
expression when we are merging the path and file access
requirements to see if we can eliminate any redundant in-
formation. If the clause we are about to store is a subset of
an existing clause we can remove the existing one, as the
current clause is more restrictive and eliminates the need to
store the less restrictive clause since every clause must be
satisfied for access to be granted. This is especially useful
for the common pattern of permissions getting more restric-
tive deeper in the hierarchy. We can further compress the
path access requirements for a file if we can distinguish be-
tween users and groups once they are stored. This should
be fairly easy to do in implementation. The reason this
helps us is because it is impossible for a user to be two
users at once, i.e., a user A cannot be user A and user B at
the same time. In the case where a user has exclusive rights
to a file, a clause with only that user will be added. As long
as this clause exists, only the user specified in it can access
the current file or any of its sub-files. This is true because in
CNF representation a user must satisfy every clause to ob-
tain access. Therefore, when a clause with a single user in
it is added we can simplify our representation by applying
the rule that a user cannot be two different users at once. If
there ever exists two singular clauses that contain two dif-
ferent users then we know the file is unreachable for any
user that is not a super-user of the system. However, if no
singular user clause exists, when we add one to the path
access requirement we can remove all the users from the
other clauses and any future clauses that contain a both a
user and group. We can do this because other users in the
path access requirement are irrelevant since the user must
satisfy the singular user clause to obtain access. Note, we
cannot do the same for singular group clauses since a user
can be a member of more than one group at the same time.
Additional rules can be applied to these expressions to fur-
ther reduce them at the cost of adding complexity to the
calculation of access control requirements.

4.2. CNF vs. DNF

The approach proposed for composing access controls
using CNF is quite similar to DNF, so for the sake of brevity
we have omitted the details for DNF. In order to compare
the effectiveness of the CNF and DNF representations for
access control it is necessary to consider: the amount of
space required to store these access requirements, the time
it takes to grant or deny access to a user, and the time it
takes to locally update path access requirements. The time
it takes to calculate path access requirements depends on
how complex of an implementation we want in order to
further compact the result. Both approaches will run in lin-
ear time with respect to the size of the parent path access
requirement.

Due to the somewhat opposite representations of CNF
and DNF, the performance of these two approaches for
granting or denying user access is inversely proportional.
When verifying that a user can access a file the DNF
method may be faster on average. This is because all of
the clauses may not have to be checked in the DNF rep-
resentation. If a user satisfies any clause the user will be
granted access. For CNF all the clauses must be checked
since a user must satisfy all clauses to be granted access.
However, when denying a user access to a file the CNF
method may be faster on average. For DNF every clause
would have to be checked to determine that a user cannot
obtain access. For CNF a user can be denied at any point
a clause is encountered that they do not satisfy. Therefore
it is not obvious which approach would perform better in
terms of computation when checking access rights in gen-
eral. However, it can be said that for both of approaches the
time to check access rights will be bounded linearly by the
size of the path access requirement. The size of the path
access requirement is in turn bounded by the length of the
path to the file, as with standard permissions, but the av-
erage case is much smaller and all checks can always be
performed in a single metadata server.

The storage requirements for the CNF and DNF ap-
proaches are somewhat opposite as well. Figure 4 shows
the worst cases for each of them, Scenario 1 is the worst
case for DNF and Scenario 2 is the worst case for CNF.
However, for Scenario 1, the worst case for DNF, using the
CNF approach we get the optimal representation. Like-
wise, for Scenario 2, the worst case for CNF, using the
DNF approach we get the optimal representation. There-
fore which solution is better really depends on the system
that it will be used on. In order to make a general estimate
we can look at the upper bounds of the storage requirement.
For the CNF approach the size of the path access require-
ment is bounded linearly by the depth of the file. It will
never be worse than storing the user and the group for each
parent directory. For the DNF approach the size of the path

Proceedings of the 22nd IEEE/13th NASA Goddard Conference on Mass Storage Systems and Technologies (MSST 2005)
0-7695-2318-8/05 $20.00 © 2005 IEEE

Scenario 1

User 1
Group A

User 2
Group B

User 3
Group C

User 4
Group D

Scenario 2

User 1
Group A

User 1
Group B

User 1
Group C

User 1
Group D

Type Scenario 1 Scenario 2
CNF � 1 � A �	��� 2 � B � � 1 � A �	��� 1 � B �

�� 3 � C �	��� 4 � D � �� 1 � C �	��� 1 � D �
DNF � 1 � B � C � D �

�� 2 � A � C � D � � 1 �	��� A � B � C � D �
�� 3 � A � B � D �
�� 4 � A � B � C �
�� 1 � 2 � 3 � 4 �

Figure 4. Worst cases for DNF (Scenario 1)
and CNF (Scenario 2) methods.

access requirement is bounded quadratically by the depth
of the file. The size of the clauses is bounded linearly, and
the number of clauses is bounded linearly, therefore this
makes the total size of the path access requirement bounded
quadratically.

We mentioned earlier that the time to check access rights
for a file, and the time to calculate the access control for
a file are bounded linearly by the size of the path access
requirements. We also described how the path access re-
quirements are bounded linearly for CNF and quadratically
for DNF by the depth of the file. Applying transitivity, we
can say the time to check access rights for a file, and the
time to calculate the access control for a file are bounded
linearly by the depth of the file for CNF and quadratically
for DNF. Therefore CNF would appear to be the obvious
choice, however this is not taking into account the struc-
ture and workload of the specific system we would apply it
to.

4.3. Handling Updates

Directory traversal must be performed only in the case
of an update to a permission or owner which changes who
has execute permission on a directory. Previous work has

shown that permission changes do not occur very often [12]
(less than 1% of metadata operations). Intuitively, when
such a change does occur, it is not as likely to occur at
a very high level in the tree (e.g. /home/students) where
it would affect many files. We can propagate these updates
lazily, similar to the Lazy-Hybrid method, to prevent a sud-
den flurry of activity on the metadata servers by marking
those files affected and calculating the new access controls
when the file is next requested. The number of network
trips necessary to perform the complete update is amortized
to only one network trip per file affected. This is because
when a file is updated, all of it’s ancestors that need to be
updated are updated at this time as well. An update only
travels as far up the tree as needed. This means that the
next time a file is accessed in a directory where a file has
been updated already the update for that file will not have
to propogate up the tree. The parent directory and all of it’s
ancestors will have already been updated the first time a file
was accessed in that directory after the update. Another in-
teresting thing to note about updates is that when updating
the the access control for a directory, if the updated path
access requirement is the same as it was before the update
then all of the files underneath it do not have to be updated.

4.4. Links

The same approach for updating can be used in order
to maintain the correct access control for links. The prob-
lem of locating a file through a link in a hash-based system
is outside the scope of this paper and has been dealt with
in several of the hash-based systems described. However,
in order to maintain correct hierarchical permissions in a
hash-based system our method can still be applied in an
interesting way. Hard links are particularly interesting be-
cause when a hard link is added to a file the access control
of the file changes.

A system that allows hard links really means that a file
may have multiple paths to it. With each of these paths
comes a set of access requirements, which can each be ex-
pressed as we have previously proposed. We can “or” the
path access requirements of all of these paths together in
order to get the correct access control for a file with multi-
ple paths (links). So when we create a hard link to a file we
take the path access requirements of the path we are adding
to the file and merge it with the file access requirements as
we would if it were the only path. Then we “or” this ex-
pression with the previous path access requirement for the
file in order to get the new path access requirement. We
can then simplify this expression with any rules we have in
place for the system, as well as the common logical rules
such as De Morgan’s rule. This update is then propogated
down the hierarchy if necessary.

Proceedings of the 22nd IEEE/13th NASA Goddard Conference on Mass Storage Systems and Technologies (MSST 2005)
0-7695-2318-8/05 $20.00 © 2005 IEEE

For symbolic links, no special consideration is neces-
sary since the link points to the entire path of a file. There
are two distinct and separate paths in this case: the path to
the link, and the path to the file. These paths are indepen-
dent of one another, so a change to one has no effect on the
other.

5. Data Collection

In order to evaluate the usefulness of our solution for
real systems we recorded a snapshot of the file system lay-
out of a large shared system. The file system we collected
this data from was a Sun NFS system that contained a large
shared research directory and the home directories of fac-
ulty, graduate students, staff and others in the CS depart-
ment at UC Santa Cruz. Additionally, we collected data
from common systems folders on a large shared Solaris
system. The data was collected using a modified version
the GNU find utility [5] that recorded the following in-
formation for each file: full path name, size, inode num-
ber, atime, ctime, mtime, user, group, mode and number of
links. Every element in the full path name was individu-
ally encrypted using a keyed MD5 hash. This was done in
order to protect user privacy on the system [7] while still
allowing the file hierarchy to be reconstructed.

6. Results

Using the raw data collected we were able to reconstruct
the hierarchical access control information for the file sys-
tems. From this data we can see the benefit of storing the
hierarchical access control information for a file as a single
object and avoiding directory tree traversals. We can also
see the benefits of merging the ownership information with
the permission bits at each level in the hierarchy.

The system we examined contained 3,896,681 files in
287,796 directories. There were 1,296 unique users and
141 unique groups. Figure 5 shows a histogram of the
depth of each file in the system we examined. The depth of
the file directly corresponds to the number of files that must
be checked before a user can obtain access to the file. By
storing this information compactly on one device we save
on average 7-9 network trips to contact devices needed to
verify access rights for a user. We also reduce the load on
each device since requests only have to contact one device
in order to access a file.

A choke point is a point in the path to a file where fur-
ther access is permitted for only a single user, choking off
access to all other users. Figure 6 shows a histogram of
the choke point depth for the files in the system that had a
choke point. This is important because as we showed in the
design section, having only one user that can access a file

Histogram of file depth

1

10

100

1000

10000

100000

1000000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

File depth

N
u

m
b

er
 o

f
fi

le
s

Figure 5. Histogram of the depths of all files.

Depth in file path at which only the owner is
allowed access ("choke point")

1

10

100

1000

10000

100000

1000000

10000000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Depth

N
u

m
b

er
 o

f
fi

le
s

Figure 6. Histogram of the depth where a
choke point occurred.

greatly reduces the amount of data that needs to be stored.
We find that 65% of the files (2,550,969 files) have a choke
point.

Figures 7 and 8 show the results of converting the access
controls to our CNF representation. The light grey bars
show the number of users/groups that must be stored in the
clauses before simplification. The dark grey bars show the
number of users/groups that must be stored after simplifica-
tion using only the two rules discussed. We see a dramatic
reduction in the amount of data that must be stored. We
can represent 31% of the files with no additional informa-
tion (empty clause), 68% of the files with just one clause,
and less than 1% of files with two clauses.

We also ran a simulation using the Lazy-Hybrid
metadata management to see how updates affect system
throughput and response time. The results are not presented
here in the interest of space, but we found that updates did
not pose a significant performance problem.

Proceedings of the 22nd IEEE/13th NASA Goddard Conference on Mass Storage Systems and Technologies (MSST 2005)
0-7695-2318-8/05 $20.00 © 2005 IEEE

1

10

100

1000

10000

100000

1000000

10000000

0 2 4 6 8 10 12 14 16 18 20 22 24 26

Number of user values

N
u

m
b

er
 o

f
fi

le
s

Users required for clauses before simplification
Users required for clauses after simplification

Figure 7. The number of user predicates that
must be stored in a CNF representation.

1

10

100

1000

10000

100000

1000000

10000000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of group values

N
u

m
b

er
 o

f
fi

le
s

Groups required for clauses before simplification
Groups required for clauses after simplification

Figure 8. The number of group predicates
that must be stored in a CNF representation.

7. Conclusion

We have presented two methods for representing hier-
archical access control for a file in a format that can be
stored locally for the file. This allows access control to be
determined for a file without having to traverse the direc-
tory tree, an operation that can be expensive in a distributed
system. We maintain access control by first merging the
permissions and ownership information and then merging
this information together for each file in the hierarchy. We
do this by using an approach based on CNF (Conjunctive
Normal Form) or another based on DNF (Disjunctive Nor-
mal Form). Data collected from an existing large shared
file system demonstrates that this is an effective method for
compactly storing the access control information for each
file.

Acknowledgments

We thank Ethan Miller, Janet Campbell and Robert Vi-
tale for their help in collecting the file system data from the
School of Engineering. We also thank the reviewers and
the members of the SSRC for their suggestions and feed-
back. This work is funded in part by Lawrence Livermore
National Laboratory, Los Alamos National Laboratory, and
Sandia National Laboratory under contract B520714, and
by a GAANN Graduate Fellowship.

References

[1] P. J. Braam. The Lustre storage architecture. Aug. 2002.
[2] S. A. Brandt, L. Xue, E. L. Miller, and D. D. E. Long. Ef-

ficient metadata management in large distributed file sys-
tems. In Proceedings of the 20th IEEE / 11th NASA God-
dard Conference on Mass Storage Systems and Technolo-
gies, pages 290–298, Apr. 2003.

[3] P. F. Corbett and D. G. Feitelson. The vesta parallel file sys-
tem. ACM Transactions on Computer Systems, 14(3):225–
264, August 1996.

[4] R. A. Floyd and C. S. Ellis. Directory reference patterns in
hierarchical file systems. IEEE Transactions on Knowledge
and Data Engineering, 1(2):238–247, 1989.

[5] F. S. Foundation. GNU find, 2003.
[6] G. A. Gibson and R. V. Meter. Network attached storage

architecture. Communications of the ACM, 43(11):37–45,
2000.

[7] G. Kuenning and E. L. Miller. Anonymization techniques
for URLs and filenames. Technical report, University of
California, Santa Cruz, Sept. 2003.

[8] D. D. E. Long, S. A. Brandt, E. L. Miller, P. Mantey,
A. Brandwajn, and K. Obraczka. Scalable file systems for
high-performance computing. Apr. 2001.

[9] E. L. Miller and R. H. Katz. RAMA: An easy-to-use,
high-performance parallel file system. Parallel Computing,
23(4):419–446, July 1997.

[10] Y. Padioleau and O. Ridoux. A logic file system. In Pro-
ceedings of the 2003 USENIX Annual Technical Confer-
ence, pages 99–112, June 2003.

[11] B. Pawlowski, C. Juszczak, P. Staubach, C. Smith, D. Lebel,
and D. Hitz. NFS version 3: Design and implementation. In
Proceedings of the Summer 1994 USENIX Technical Con-
ference, pages 137–151, 1994.

[12] D. Roselli, J. Lorch, and T. Anderson. A comparison of
file system workloads. In Proceedings of the 2000 USENIX
Annual Technical Conference, pages 41–54, June 2000.

[13] S. A. Weil, K. T. Pollack, S. A. Brandt, and E. L. Miller.
Dynamic metadata management for petabyte-scale file sys-
tems. In Proceedings of the 2004 ACM/IEEE Conference
on Supercomputing (SC’04), Nov. 2004.

[14] J. Yan, Y.-L. Zhu, H. Xiong, R. Kanagavelu, F. Zhou, and
L. Weon. A design of metadata server cluster in large dis-
tributed object-based storage. In Proceedings of the 21st
IEEE / 12th NASA Goddard Conference on Mass Storage
Systems and Technologies, pages 199–205, 2004.

Proceedings of the 22nd IEEE/13th NASA Goddard Conference on Mass Storage Systems and Technologies (MSST 2005)
0-7695-2318-8/05 $20.00 © 2005 IEEE

