
Availability in Global Peer-To-Peer Storage
Systems

QIN XIN
Storage Systems Research Center
University of California, Santa Cruz

THOMAS J. E. SCHWARZ, S. J.
Santa Clara University

ETHAN L. MILLER
Storage Systems Research Center
University of California, Santa Cruz

Keywords
availability, peer-to-peer systems, hill-climbing

Abstract

Peer-to-peer (P2P) file sharing applications have become increasingly
popular. Measurements of P2P systems indicate large heterogeneity in the
availability of individual nodes. Many have cyclic behavior, whereas others
are always available. This paper proposes a cooperative storage technique
that employs erasure coding schemes on a collection of data objects and pro-
vides various levels of data redundancy. Based on this technique, we study a
history-based hill climbing scheme that takes advantage of varied time zones
in a global P2P system. Our simulation results show the improved data avail-
ability by this scheme. We also investigate several climbing strategies includ-
ing choice of coding schemes and laziness of data movement.

1 Introduction
The past few years have seen peer-to-peer (P2P) systems increase in popularity.
Unlike traditional client-server systems which essentially rely on a few servers
with high reliability and availability, P2P systems decentralize the management
of data storage and harness unused resources on computers distributed across the

Qin Xin and Ethan Miller were supported in part by Lawrence Livermore National Laboratory,
Los Alamos National Laboratory, and Sandia National Laboratory under contract B520714.

1



2 Proceedings in Informatics

world. Within a P2P system, failure of a few nodes may not result in a sharp de-
crease in data availability because all nodes are peers and the remaining peers may
provide or reproduce the required data. However, nodes in P2P systems are not
always available. The variation in properties and the complexities in distributions
of the millions of individual nodes in a P2P system provide a great potential to
improve availability.

This paper proposes a hill-climbing scheme based on a cooperative storage
technique to boost data availability in world-wide peer-to-peer storage systems.
Recently, a few models have been proposed focusing on availability enhancement
in P2P systems [3]. OceanStore [7] uses the P2P technique to store data reliably.
By supporting nomadic data, this system provides highly available storage utility.
Any computer can join the infrastructure at any time. In exchange for economic
compensation, participants in OceanStore contribute remote storage or provide
local user access. Since nodes cannot be individually trusted, each data object is
broken into n fragments by using an erasure coding scheme so thatm out of n frag-
ments suffice to reconstruct the object. Each data object is versioned and spread
over hundreds or thousands of servers randomly in read-only form. To keep track
of the sites where each object lives causes much system overhead. We propose a
variation of this scheme based on redundancy groups [11]. A redundancy group
is a collection of data objects. By using erasure coding schemes, a redundancy
group is then broken into m fragments in a manner that the original n data objects
in the group are broken as well. This is done together with the parity fragments,
which provide fault tolerance. Such a method is called an m/n coding scheme
and denoted as “m out of n.” We make use of a deterministic data distribution
algorithm— RUSH [6] to map data objects into redundancy groups and to allo-
cate redundancy groups to the nodes in a P2P system. Given an identifier of each
redundancy group, RUSH provides a list of nodes for each redundancy group so
that we can locate the nodes and access data very quickly. We further extend the
list to include the potential sites where fragments in the redundancy group can be
moved to later on. With redundancy groups and the smart data allocation scheme,
data is stored in a cooperative way among the nodes in a P2P system. Also, more
importantly, we support data moving efficiently via the extended node lists, there-
fore, the desired adjustment for data storage can be done without expensive cost
of system overhead.

Data availability can be improved by adjusting data locations because of the
great heterogeneity among nodes in a P2P system. Studies of P2P systems [9]
show that nodes tend to be quite unreliable. In a storage system such as OceanStore,
this might not be the case, since participation would be based on an explicit con-
tract. In contrast, participants in a system like Napster view their participation as
casual. Douceur [4] postulates that node availability is cyclic. Bhagwan, et al. [2]
also pointed out that availability in P2P systems can be modeled by a combina-
tion of two distributions: daily join/departure and long-term behavior. In our study
here, we distinguish between two type of nodes: server-type nodes that tend to be



Xin et al: Availability in Global Peer-To-Peer Storage Systems 3

always accessible, and cyclic type nodes that are not. The latter nodes reflect the
established Internet habits of their owners that depend on the time and day of the
week. Besides node failure, owners also might take a vacation— during which the
node is probably not available. Thus, we cannot view the unavailability of these
nodes as completely cyclic.

We distinguish between data reliability (the probability that data is not irre-
trievably lost) and data availability (the probability that data is not accessible).
Data reliability depends on the long-term behavior of a node, whereas data avail-
ability is mostly determined by the current behavior of a node. A node that is
up for small periods of time contributes much to data reliability but little to data
availability. Because of the cyclic behavior of peers in a global P2P system, a node
that is up at one time might be down at other time; thus, data availability depends
on the status of the nodes on which data is stored.

In this paper, we focus on availability, rather than reliability. The central idea
is to improve availability by selecting the right combination of storage sites for a
redundancy group. For example, we assume a 32 out of 64 scheme is used and our
data placement algorithm [6] gives us more than 64 sites, say 75 candidates for
placement, but we only use 64 of these sites. If we find a number of cyclic nodes
among those 75, they are likely to be used; otherwise, there is an incentive to
turn off computers, because their owners get the economic benefit of participation
in the scheme without the cost of contributing storage. However, if 15 nodes are
cyclic nodes located in California, for an example, all of these 15 nodes will be
likely to be off during the night. It would be much better to trade the cyclic nodes
in California for several cyclic nodes among the 75 or a few cyclic nodes in other
time zones, such as New York, Lausanne and Tokyo, to distribute the downtime.
By judiciously selecting nodes, we can greatly improve data availability.

2 P2P Storage
A global P2P system is very dynamic: at any given moment, one node may join
or leave the system. Data is viewed as nomad, and redundancy is necessary to
provide fault tolerance and highly availability of data access. In order to locate
data quickly and decrease system overhead in book-keeping, we propose to col-
lect a set of data objects as a group, and configure the group by adding replicas
or parities. We define such a collection of data as a redundancy group. In this
section, we first have a brief look at characteristics of data storage in peer-to-peer
systems, and then describe the construction process and varied configurations of
a redundancy group. We also discuss how we support adaptive data placement in
a peer-to-peer system.



4 Proceedings in Informatics

2.1 Availability Characteristics in Global Peer-to-Peer Systems
One prominent attribute of P2P systems is that peers are symmetric: they are
able to function as both a server and a client. This distinguishes P2P systems
from traditional server-client systems. Measurement of two popular P2P systems,
Gnutella and Napster, indicates that a great amount of heterogeneity exists among
individual peers in various aspects: number of files shared, bandwidth, latency,
and availability [9]. Surprisingly, very few peers in both systems fall in the high-
availability category. The study of node availability in Overnet, another P2P file
sharing application, by Bhagwan et al., observed the similar fact. They proposed
that availability in P2P systems can be modeled by a combination of two distri-
butions: daily join/departure and long-term behavior. Douceur [4] also suggested
that hosts exhibit availability behavior from each of the two classes: always-on
and cyclic on/off; so he modeled host availability by a gradual mix of two distri-
butions.

Sites in a P2P system are usually distributed across the world. Their locations
in various time zones influence their cyclic behavior. For example, two cyclic
nodes that are down during the night, but located in Los Angeles and Bern, show
complimentary availability due to the clock difference. We can take advantage of
this kind of behavior to improve availability.

2.2 Redundancy Groups
A global P2P storage system contains hundreds of terabytes to petabytes of data
objects. For each object, we assign a unique Object Identifier (OID) for it in the
system; this identifier can be either assigned randomly or perhaps calculated by
the MD5 or SHA1 hash. Each object belongs to a unique redundancy group with
its own unique group identifier (GID). We assume that data objects have approxi-
mately the same size. If necessary, data objects can be subdivided and / or padded
with zeroes. The best performance can be achieved if small data objects are ac-
cessed from a single process of data transfer, but large data objects must be trans-
ferred from multiple sources.

In light of the dynamic nature of P2P systems, new objects and groups are
created, and some objects might change their group membership. Similarly, as
peers enter and exit the system, some nodes will transfer data objects dynamically
from other nodes, either to balance the load, or to take over from a failed or leaving
node. The details are beyond the scope of this paper.

To guarantee high data availability, we use an m n erasure coding mechanism
to configure redundancy groups. Each redundancy group is split into n fragments
so thatm fragments suffice to recalculate the contents of the group. To save down-
load time, we allow the data itself to be a fragment and thus accessible in a single
transfer. We use systematic Erasure Correcting Codes (ECC), such as generalized
Reed-Solomon codes, Tornado codes, etc. These codes take the data and generate



Xin et al: Availability in Global Peer-To-Peer Storage Systems 5

additional parity fragments. Some codes, such as generalized Reed-Solomon cre-
ate parity fragments of the same size as data fragments, while others will create
parity fragments that are slightly larger.

Given a group identifier (GID), we use a data placement algorithm such as
RUSH [6] to provide a number N n of possible peers for storage. We call the
N nodes, identified by the placement algorithm, the candidate list. When a redun-
dancy group is created, we store its fragments on the first n servers in the candidate
list, and then use measured uptime as the system is used to find n among the N
servers that can give the best availability. The candidate list provides the possible
locations of data objects for further adjustment of data placement with the aim to
achieve high availability.

To access a data object, we first determine the redundancy group. This de-
pends on the state of the system, but a local address cache will typically deter-
mine the group correctly. If not, the system will find the correct group by the
placement algorithm. Next, the client accesses a node in this group. All nodes
in a redundancy group have complete location information for the group. This
protects against negative effects from large values of n. The request will then be
directed to the correct node, which hopefully fulfills the request. By caching the
return address, the owner will have a good chance to retrieve the object directly
from the storage node at the next time.

If the access did not succeed, then the client asks all the nodes in the group
to send the fragments to it. If the client receives m or more fragments, then the
client can reconstruct the data object, that is, the data object is available. Other-
wise, the object is unavailable, and only further probing will show whether the
unavailability is temporary or not.

The amount of metadata stored in each node depends on the number of groups
on the node. Since nodes carrying fragments in the same group need to monitor
each other, each node should only carry fragments from few groups. Of course, the
load at each site will be well balanced with many groups statistically. We estimate
that 10GB total storage at each site and 10 fragments of 1GB each are reasonable
choices. Each node then would have (10N 10) other sites to be concerned about;
this does not constitute significant overhead.

3 Improving Availability Using Hill-Climbing
The storage technique based on redundancy groups provides an efficient way to
store data objects in a cooperative environment. With a list of nodes indicating
the current and possible locations, the process of locating data object becomes
fast, and more attractively, we are able to adjust data locations. Thus we achieve
superior data availability in a peer-to-peer system even though hosts are frequently
down or offline.

We place data objects within a redundancy group g on peers sg i, for i 1 N



6 Proceedings in Informatics

and select n peers among them that yield the best availability. One among these n
peers is randomly elected as a leader whose task is to optimize availability. If a
leader is unavailable for a long time, it will be replaced. The leader uses statistical
data on the availability of its “buddies”—the other nodes carrying objects from
the redundancy group. Based on its historical knowledge, the leader then selects
the buddies that can improve the availability of the group.

Ideally, we should evaluate every possible set of n buddies, but n
N is typically

far too large to proceed efficiently; this problem is NP-complete. Instead, we have
developed heuristics that approach the optimal solution.

We propose a data placement adjustment mechanism that considers the cyclic
behavior of nodes in a P2P system. Since it can steadily improve data availability,
we put it in the category of hill climbing algorithms. FARSITE [5] uses a random
hill-climbing method, which differs with our mechanism in that history of node
availability is not considered in the random climbing. We call our mechanism
History Based Hill Climbing algorithm (HBHC). We will discuss how it works
in detail in this section and show the evaluation results in the next section, with a
comparison against the random hill climbing algorithm.

3.1 History Based Hill Climbing (HBHC)
History Based Hill Climbing (HBHC) considers cyclic behaviors of nodes in P2P
storage systems. It gathers statistics on nodes up-times and uses a simple opti-
mization to select those nodes that historically have shown the best availability.
The availability of each node is represented by up-time scores. The score of each
node is set up to be zero at system initialization, and it is increased by one if the
node is available during a periodical scan, and decreased by one if the node is
down. Note that we view a node to be available/up only when it is online. Mem-
bers in one redundancy group keep a record that lists the up-times scores of all
the buddies in the group and disseminate this record among the nodes within the
redundancy group in an epidemic way. After a period of collecting statistics, our
algorithm begins to run. The node with the lowest uptime score will be swapped
with the node selected from the list of candidate locations (which differs from the
locations of the current buddies) of redundancy groups if the node has a higher
score. This climbing process can be very aggressive: the locations of buddies are
adjusted as long as the redundancy group is available, and a number of buddies
in a group can be adjusted in parallel. However, aggressive climbing causes too
much system overhead.We propose a lazy version of hill climbing by setting up a
threshold number T . Only if the number of available peers in a redundancy group
reaches or falls below T , would the climbing process be carried out.

The pseudo-code of HBHC is shown in Figure 1. Suppose each redundancy
group is configured by m out of n erasure coding scheme, in other words, data
is accessible when any m nodes are available among n nodes where data with
its parities are stored, and access to a data is regarded as failed if less than m



Xin et al: Availability in Global Peer-To-Peer Storage Systems 7

hill climb m node list threshold alg

peers unavail node IDs of currently unavailable peers
n unavail peers unavail
else if n unavail threshold
for i threshold to n unavail
if alg HBHC
x a high-scoring available candidate chosen at random
else
x an available candidate chosen at random

Rebuild data from peers unavaili onto x
return 1

Figure 1: Pseudo-code for the hill-climbing algorithm using m out of n redun-
dancy. The threshold to swap is indicated by the threshold parameter. If more
thanm nodes that currently hold data are unavailable, this algorithmwill not work
because data is unavailable.

nodes are up at a given time. Note that hill climbing can be started only when data
is accessible. We label the lazy option by a flag lazy f lag, indicating whether
the climbing is active whenever data is accessible, or is only active when the
number of unavailable nodes reaches a threshold number T . Our data placement
algorithm, RUSH [6], gives the current locations where data is stored, with a list
of candidates where data can be moved to later. For one redundancy group G,
HBHC selects a node currently in the redundancy group whose up-time score
is the lowest, say node A. It then chooses a node with a higher score from the
candidate list, say node B, and moves the data chunk in the group G from node A
to node B. Node Bmust be available during the moving period, but node A can be
down at that time since the data chunk can be regenerated from other members in
group G by the erasure coding scheme, but at the cost of reading multiple nodes.

3.2 Random Hill Climbing
Random hill climbing, on the other hand, does not keep track of the uptime
records of the nodes in a redundancy group. Instead, it randomly chooses a down
node among the current peers within the group and replaces it with randomly-
chosen available node from the candidate list, as shown in Figure 1. The process
is similar to hill climbing data placement in FARSITE system [5]. In contrast to
HBHC, this scheme avoids collecting statistics, but does not prevent instances of
thrashing, where we select ill-suited nodes.



8 Proceedings in Informatics

Los Angeles 

Chicago 
New York 

London Lausanne 

Moscow 

Tokyo 

Hong Kong 

Sydney 

Figure 2: Node locations in a global P2P storage system.

4 Simulation Evaluation
Our simulation evaluation is based on a simple model of a global P2P storage
system. The model considers various worldwide time zones and cyclic behavior
among peers in this system. We explore the improvement of data availability by
the history based hill climbing algorithm and compare it with the random hill
climbing policy. System availability is measured in units of “nines” [5], defined
as log10 1 P , whereP is the fraction of the time when data objects in a system
are available. For instance, an availability of 4 nines implies that data objects are
accessible during 99.99% of the time.

4.1 System Assumptions
The simple model of a global P2P storage system is shown in Figure 2.We assume
106 peer sites in our P2P system are evenly distributed in the nine timezones
across the world: Los Angeles (GMT-8) (GMTn is calculated by adding n hours to
GreenwichMean Time), Chicago (GMT-6), New York (GMT-5), London (GMT),
Lausanne (GMT+1), Moscow (GMT+3), Hongkong (GMT+8), Tokyo (GMT+9),
and Sydney (GMT+10). There is no central controller in such a system, and each
peer plays dual roles—server and client. Files are stored in a cooperative fashion
as each redundancy group is broken into fragments and placed across a number of
peers. However, the group membership is rather loose: any peer can join or leave
a redundancy group at any given time.

It is assumed that peers have two classes of availability behavior [2, 4]: always
on and cyclically on/off. The ratio of cyclic-type to always-on type peers depends
on the particular P2P system. Douceur [4] reported that about 60% of the hosts
in Napster and Gnutella system had less than 70% availability (0.5 nines), due
mainly to the cyclic behavior. We call the ratio of cyclic to always-on nodes as



Xin et al: Availability in Global Peer-To-Peer Storage Systems 9

cyclic ratio. In our simulations, we configured the cyclic ratio to be 50%; it can
be altered to simulate the availability behavior of various types of P2P systems.
Cyclic behavior is further classified into two categories: daily-off and weekend-
off. Daily-off behavior includes daytime off and nighttime off and takes three
quarters in the cyclic-type nodes, while the remaining one quarter of the nodes
appears to be weekend-off, either daytime and weekend off or night time and
weekend off. A finer partition of cyclic behavior will be closer to real systems, so
we consider using real system traces in our future work.

4.2 Simulation Results
We explored system availability improvement from history based hill climbing
(HBHC) and compared it with randomhill climbing (RANDOM) and no-climbing.

We use three variants of erasure coding schemes to configure redundancy
groups: 16 out of 24, 16 out of 32, and 32 out of 64. Each redundancy group
is stored across 24, 32, and 64 peers in each scheme, respectively. With 1GB
client data in a redundancy group, the size of fragments on each peer is 64MB for
the 16/24 and 16/32 schemes, and 32MB for 32/64. Total client data capacity is
200TB. We measured system availability by randomly sampling a certain num-
ber of redundancy groups hourly. The maximum tolerable number of unavailable
peers for m out of n schemes is (n m). When the number of unavailable peers
in a redundancy group is greater than n m, the group is unavailable and hill
climbing can not be carried out. We simulated the system for 15 weeks. As we
will see, data availability reaches 5–6 nines at the end of 15 weeks when a proper
erasure coding scheme, such as 16 our of 32, is used. There leaves little room
to improve availability after that. If the erasure coding is less aggressive, say, 16
out 24, the steady improvement by hill climbing algorithm will continue. We as-
sume HBHC starts after one week of statistics collection.We define the number of
nodes on which data can be moved onto in each redundancy group as the length of
candidate list, and we extend the configuration parameters of the erasure coding
scheme as m/n/k, where k is the length of the candidate list.

4.2.1 Availability Improvement by HBHC

We first measured the data availability improvement by history-based hill-climbing
algorithm (HBHC). We compare this scheme with random hill-climbing method
(RANDOM) and no-climbing case, in a P2P system with 106 nodes and cyclic
ratio of 50%. Redundancy groups are configured by using 16 out of 32 erasure
coding, with length of the candidate list as 32, which is referred as 16/32/32.

Our results, shown in Figure 3(b), indicate that both hill climbing algorithms
improve data availability steadily while HBHC performs better in a long run.
Availability under no-climbing policy remains unaltered at 2.5 nines within our
measurement period. RANDOM climbing achieves 5 nines after 15 weeks since



10 Proceedings in Informatics

Elapsed time (weeks)
0 3 6 9 12 15

Da
ta

 a
va

ila
bi

lity
 (9

s)

0
1
2
3
4
5
6
7 HBHC

RANDOM
No climbing

(a) 16/24/32

Elapsed time (weeks)
0 3 6 9 12 15

Da
ta

 a
va

ila
bi

lity
 (9

s)

0
1
2
3
4
5
6
7 HBHC

RANDOM
No climbing

(b) 16/32/32

Elapsed time (weeks)
0 3 6 9 12 15

Da
ta

 a
va

ila
bi

lity
 (9

s)

0
1
2
3
4
5
6
7

HBHC
RANDOM
No climbing

(c) 32/64/32

Figure 3: Availability improvement of RANDOM and HBHC for different redun-
dancy configurations.

it always brings an available node to each redundancy group, thus the chance that
data is accessible is increased. During the first week, HBHC does not differ much
from RANDOM, but it outperforms RANDOM by 1–2 nines as more statistical
information is gathered as time goes on.

4.2.2 Redundancy Group Configuration

The m out of n erasure coding scheme is one of the determining factors in data
availability. Any number can be picked as n, and the larger the n is, the higher the
bandwidth can be used, but the more coordinating effort should be paid among
each redundancy group. m is dependent on n, and the ratio of between m and
n is the storage efficiency r (r m n). Higher storage efficiency implies lower
redundancy, and thus weaker protection capability against node unavailability.
The choice of the parameters m and n depends on the design goal of a particular
peer-to-peer system. We chose three kinds of erasure coding configurations to
investigate the tradeoffs among them: 16 out of 24 (r = 66%), 16 out of 32 (r =
50%), and 32 out of 64 (r = 50%). The length of the candidate list is set up to be
32 for each configuration.

From Figure 3, we see that the configuration of erasure coding greatly impacts
data availability. It is no surprise that 32/64 provides the best availability amongst
the three schemes. 16 out of 24 can only give 3 nines even with HBHC algorithm,
but 3.5 nines can be achieved without any hill climbing schemes when 32 out 64
is used. Our simulator accuracy is 7 nines. With HBHC, data availability of the
32/64/32 configuration reaches this level after 11 weeks. We noticed a slight drop
in availability from the 8th to the 9th week by HBHC with 32 out 64 scheme,
and we attribute this to lack of measurement accuracy. As we see, the 16/24/32
configuration has very limited availability, and the 32/64/32 one works well in the
system but its overhead is higher than 16 out of 32. In the rest of the paper, we
use 16 out of 32 as the default configuration of redundancy group if not specified.



Xin et al: Availability in Global Peer-To-Peer Storage Systems 11

Elapsed time (weeks)
0 3 6 9 12 15

Da
ta

 a
va

ila
bi

lity
 (9

s)

0
1
2
3
4
5
6
7 length 64

length 32
length 16
length 8
length 4

(a) RANDOM climbing

Elapsed time (weeks)
0 3 6 9 12 15

Da
ta

 a
va

ila
bi

lity
 (9

s)

0
1
2
3
4
5
6
7 length 64

length 32
length 16
length 8
length 4

(b) HBHC

Figure 4: Effects of candidate list length on availability. Redundancy group con-
figuration is 16 out of 32.

4.2.3 Length of the Candidate List in Hill Climbing Schemes

The key part of hill-climbing algorithms is the ability to choose a node from a
candidate list and to swap it in the redundancy group, but how long should a
candidate list be? A longer list has a higher potential to include “good” nodes in
a redundancy group; on the other hand, a shorter list invokes lower overhead for
coordinating nodes among a group.We investigated the impact of the length of the
candidate list by varying its length from 4 to 64 in the 16 out of 32 configurations
for both RANDOM andHBHC. Shown in Figure 4, longer candidate lists improve
the overall availability, but the impact of moving from 32 candidates to 64 is
limited. We concluded that a very long candidate list is not necessary because 32
candidates are enough to make efficient placement adjustment.

4.2.4 Lazy Climbing Strategy

As we discussed in Section 3.1, lazy climbing can reduce the number of adjust-
ment process and thus decrease the overhead by aggressive hill climbing.We offer
a lazy option in random hill climbing and HBHC scheme. A parameter T is set up
to control the degree of laziness in hill climbing. For an example, if T is 14, then
only when the number of unavailable nodes in a redundancy group is equal to or
greater than 14, the hill climbing process would start; otherwise, data stays on the
original set of nodes in the group.

We examine the impact of the threshold of the lazy climbing on data availabil-
ity in both hill climbing schemes by varying the threshold values. As expected,
Figure 5 shows that a higher lazy threshold leads to lower data availability. How-
ever, more than 5 nines are achieved even when the threshold is 8, which is
1
2 n m for the m out of n configuration where m equals to 16 and n is 32.
Although it is about one nine lower than the non-lazy strategy when HBHC is



12 Proceedings in Informatics

Elapsed time (weeks)
0 3 6 9 12 15

Da
ta

 a
va

ila
bi

lity
 (9

s)

0
1
2
3
4
5
6
7 Non−lazy

Threshold = 8
Threshold = 12
Threshold = 14

(a) RANDOM climbing

Elapsed time (weeks)
0 3 6 9 12 15

Da
ta

 a
va

ila
bi

lity
 (9

s)

0
1
2
3
4
5
6
7 Non−lazy

Threshold = 8
Threshold = 12
Threshold = 14

(b) HBHC

Figure 5: Availability as threshold varies for a redundancy group configuration of
16/32/32.

used, the adjustment effort is about half of the non-lazy one. We are in favor of
lazy climbing strategy when the threshold is properly set up since we can both
achieve high data availability while maintaining low system cost for placement
adjustment.

4.3 Summary
Non-lazy HBHC performs best among all the policies examined across three cod-
ing schemes. However, it pays higher cost of more-aggressive adjustment of data
placement than lazy HBHC and produces extra overhead of statistics collection
over RANDOM. In order to improve availability while still keeping low system
overhead, the choices of the erasure coding scheme and the level of laziness in
hill-climbing (i. e. the threshold) are essential. The coding scheme is also directly
related bookkeeping overhead in each redundancy group. The more aggressive
the coding scheme (i. e. the larger n in an n/m scheme), the more complicated
the maintenance of redundancy groups. For example, the membership in each
redundancy group under 32/64 scheme is about twice that under 16/32, result-
ing in more messages for group communication. Availability favors using more
available nodes and hill-climbing schemes are biased against cyclic nodes. This
introduces an interesting question at the level of the business model, namely how
to dissuade people from exploiting this bias to protect their node from being used
and how to detect this behavior.

5 Related Work
A measurement study of peer-to-peer file sharing systems [9] captures a signifi-
cant amount of heterogeneity across the peers in the two popular multimedia file



Xin et al: Availability in Global Peer-To-Peer Storage Systems 13

sharing systems, Napster and Gnutella. This heterogeneity appears in bandwidth,
latency, and availability. It is also reported that about 60% of the hosts in each
systems had less than 70% availability.

Douceur [4] examined availability distributions and proposed an analytical
model which postulates that hosts exhibit two classes of availability behaviors—
always-on and cyclic-on/off. The availability study of the Overnet P2P file system
by Bhagwan et al. [2] observed the similar behavior pattern. We built our model
based on this pattern.

FARSITE [1] is a serverless distributed file system that provides improved
file availability and reliability. A directory group is used to ensure that the files
they store are never lost. FARSITE assumes that recovery is sufficiently fast that
data is never lost as the maximum size of clients is at the order of 105. Their
large-scale simulations indicate that the random replica placement is better than
the replacements that consider availability at initialization, for reasons of the dis-
tribution of free space and evenness of machine reliability. Different from P2P
systems, FARSITE is designed to support typical desktop workloads in academic
and corporate environments. Nodes in FARSITE are far less dynamic than those
in a global peer-to-peer system.

Pangaea [8] provides fault tolerance through server-based pervasive replica-
tion. It assumes trusted servers and allows individual servers to continue serving
most of their data even when disconnected. It distinguished between “gold” and
“bronze” replicas, where the golden ones play an additional role in maintaining
the hierarchical name space.

OceanStore [7] is a wide area storage system which provides high availability,
locality, and security by supporting nomadic data. It uses erasure coding to pro-
vide redundancy without the overhead of strict replication and is designed to have
a very long Mean-Time-To-Data-Loss (MTTDL). An analysis of the reliability
of OceanStore [10] showed that erasure codes had higher reliability than simple
replication for a given amount of storage overhead.

6 Conclusions and Future Work
This paper introduces a cooperative storage technique which employs erasure
coding schemes on a collection of data objects, as called redundancy groups, and
provides various levels of data redundancy. Based on this technique, we propose a
history-based hill climbing (HBHC) data placement policy to improve availability
in P2P systems, which considers cyclic behavior including daily and weekend-off
availability pattern. We have studied several essential factors related to HBHC,
including coding schemes for redundancy groups, length of candidate list, and
laziness of climbing.

Our simulation results show that hill climbing schemes, including HBHC and
RANDOM, can achieve higher and higher availability as time goes on, by ad-



14 Proceedings in Informatics

justing the locations of the nodes in each redundancy group. HBHC outperforms
RANDOM by keeping track of nodes and taking advantage of their availability
history. With lazy options in hill climbing schemes, system overhead is reduced
as data availability gets enhanced. We also noticed that a very long candidate list
is unnecessary.

Our work shows the potential to use hill climbing algorithms to boost data
availability in global P2P systems. We are still refining our model and plan to
feed traces of P2P systems into our simulator in order to consider the changing
cyclic behavior in real systems. We also plan to measure the efficiency of message
dissemination in such a system and use machine learning techniques to obtain an
optimal combination of nodes in each redundancy group.

Acknowledgments
We would like to thank the members of the Storage Systems Research Center for
their help and guidance. We especially thank Professor David Helmbold for his
advice on this research. We would also like to thank the anonymous reviewers for
their helpful comments.

References
[1] ADYA, A., BOLOSKY, W. J., CASTRO, M., CHAIKEN, R., CERMAK, G.,

DOUCEUR, J. R., HOWELL, J., LORCH, J. R., THEIMER, M., AND WAT-
TENHOFER, R. FARSITE: Federated, available, and reliable storage for an
incompletely trusted environment. In Proceedings of the 5th Symposium on
Operating Systems Design and Implementation (OSDI) (Boston, MA, Dec.
2002), USENIX.

[2] BHAGWAN, R., SAVAGE, S., AND VOELKER, G. M. Understanding avail-
ability. In Proceedings of the Second International Workshop on Peer-to-
Peer Systems (IPTPS 2003) (Berkeley, CA, 2003).

[3] BHAGWAN, R., TATI, K., CHENG, Y.-C., SAVAGE, S., AND VOELKER,
G. M. TotalRecall: System support for automated availability management.
In Proceedings of the 1st Symposium on Networked Systems Design and
Implementation (NSDI) (2004), USENIX.

[4] DOUCEUR, J. R. Is remote host availability governed by a universal law.
Performance Evaluation Review 31, 3 (Dec. 2003), 25–29.

[5] DOUCEUR, J. R., AND WATTENHOFER, R. P. Large-scale simulation of
replica placement algorithms for a serverless distributed file system. In Pro-
ceedings of the 9th International Symposium on Modeling, Analysis, and



Xin et al: Availability in Global Peer-To-Peer Storage Systems 15

Simulation of Computer and Telecommunication Systems (MASCOTS ’01)
(Cincinnati, OH, Aug. 2001), IEEE, pp. 311–319.

[6] HONICKY, R. J., AND MILLER, E. L. Replication under scalable hashing:
A family of algorithms for scalable decentralized data distribution. In Pro-
ceedings of the 18th International Parallel & Distributed Processing Sym-
posium (IPDPS 2004) (Santa Fe, NM, Apr. 2004), IEEE.

[7] KUBIATOWICZ, J., BINDEL, D., CHEN, Y., EATON, P., GEELS, D., GUM-
MADI, R., RHEA, S., WEATHERSPOON, H., WEIMER, W., WELLS, C.,
AND ZHAO, B. OceanStore: An architecture for global-scale persistent
storage. In Proceedings of the 9th International Conference on Architec-
tural Support for Programming Languages and Operating Systems (ASP-
LOS) (Cambridge, MA, Nov. 2000), ACM.

[8] SAITO, Y., KARAMANOLIS, C., KARLSSON, M., AND MAHALINGAM,
M. Taming aggressive replication in the Pangaea wide-area file system. In
Proceedings of the 5th Symposium on Operating Systems Design and Imple-
mentation (OSDI) (Dec. 2002), USENIX.

[9] SAROIU, S., GUMMADI, P. K., AND GRIBBLE, S. D. A measurement
study of peer-to-peer file sharing systems. Tech. Rep. UW-CSE-01-06-02,
University of Washington, July 2001.

[10] WEATHERSPOON, H., AND KUBIATOWICZ, J. Erasure coding vs. repli-
cation: A quantitative comparison. In Proceedings of the First Interna-
tional Workshop on Peer-to-Peer Systems (IPTPS 2002) (Cambridge, Mas-
sachusetts, Mar. 2002).

[11] XIN, Q., MILLER, E. L., SCHWARZ, T. J., LONG, D. D. E., BRANDT,
S. A., AND LITWIN, W. Reliability mechanisms for very large storage
systems. In Proceedings of the 20th IEEE / 11th NASA Goddard Conference
on Mass Storage Systems and Technologies (Apr. 2003), pp. 146–156.

Qin Xin is a Ph. D. student in the Computer Science Department and Storage Systems
Research Center the at the University of California, Santa Cruz. She can be reached by
email at qxin@cs.ucsc.edu.

Thomas J. E. Schwarz, S. J. is an associate professor in the Computer Engineer-
ing Department at Santa Clara University, and is an affiliate of the Storage Systems
Research Center at the University of California, Santa Cruz. His email address is
tjschwarz@scu.edu.

Ethan L. Miller is an associate professor in the Computer Science Department at the Uni-
versity of California, Santa Cruz, where he is a member of the Storage Systems Research
Center. He can be reached by email at elm@cs.ucsc.edu.


